Matches in SemOpenAlex for { <https://semopenalex.org/work/W3026387788> ?p ?o ?g. }
- W3026387788 endingPage "8342" @default.
- W3026387788 startingPage "8329" @default.
- W3026387788 abstract "A novel framework is proposed for enhancing the driving safety and fuel economy of autonomous vehicles (AVs) with the aid of vehicle-to-infrastructure (V2I) communication networks. The problem of driving trajectory design is formulated for minimizing the total fuel consumption, while enhancing driving safety (by obeying the traffic rules and avoiding obstacles). In an effort to solve this pertinent problem, a deep reinforcement learning (DRL) approach is proposed for making collision-free decisions. Firstly, a deep Q-network (DQN) aided algorithm is proposed for determining the trajectory and velocity of the AV by receiving real-time traffic information from the base stations (BSs). More particularly, the AV acts as an agent to carry out optimal action such as lane change and velocity change by interacting with the environment. Secondly, to overcome the large overestimation of action values by the Q-learning model, a double deep Q-network (DDQN) algorithm is proposed by decomposing the max-Q-value operation into action selection and action evaluation. Additionally, three practical driving policies are also proposed as benchmarks. Numerical results are provided for demonstrating that the proposed trajectory design algorithms are capable of enhancing the driving safety and fuel economy of AVs. We demonstrate that the proposed DDQN based algorithm outperforms the DQN based algorithm. Additionally, it is also demonstrated that the proposed fuel-economy (FE) based driving policy derived from the DRL algorithm is capable of achieving in excess of 24% of fuel savings over the benchmarks." @default.
- W3026387788 created "2020-05-29" @default.
- W3026387788 creator A5033735895 @default.
- W3026387788 creator A5071237834 @default.
- W3026387788 creator A5076409244 @default.
- W3026387788 creator A5091122305 @default.
- W3026387788 date "2020-08-01" @default.
- W3026387788 modified "2023-10-18" @default.
- W3026387788 title "Enhancing the Fuel-Economy of V2I-Assisted Autonomous Driving: A Reinforcement Learning Approach" @default.
- W3026387788 cites W1932847118 @default.
- W3026387788 cites W2031575274 @default.
- W3026387788 cites W2068752967 @default.
- W3026387788 cites W2129371268 @default.
- W3026387788 cites W2141833192 @default.
- W3026387788 cites W2161061923 @default.
- W3026387788 cites W2200971133 @default.
- W3026387788 cites W2219431285 @default.
- W3026387788 cites W2294480821 @default.
- W3026387788 cites W2306644740 @default.
- W3026387788 cites W2333462425 @default.
- W3026387788 cites W2341848647 @default.
- W3026387788 cites W2341935269 @default.
- W3026387788 cites W2343568200 @default.
- W3026387788 cites W2562947506 @default.
- W3026387788 cites W2566155463 @default.
- W3026387788 cites W2702886553 @default.
- W3026387788 cites W2764313696 @default.
- W3026387788 cites W2769456309 @default.
- W3026387788 cites W2776055286 @default.
- W3026387788 cites W2787032200 @default.
- W3026387788 cites W2789702236 @default.
- W3026387788 cites W2795543364 @default.
- W3026387788 cites W2805499321 @default.
- W3026387788 cites W2809145456 @default.
- W3026387788 cites W2809428871 @default.
- W3026387788 cites W2866537327 @default.
- W3026387788 cites W2886374543 @default.
- W3026387788 cites W2891353362 @default.
- W3026387788 cites W2897522585 @default.
- W3026387788 cites W2901632364 @default.
- W3026387788 cites W2904866617 @default.
- W3026387788 cites W2906647810 @default.
- W3026387788 cites W2914872182 @default.
- W3026387788 cites W2952736579 @default.
- W3026387788 cites W2963238245 @default.
- W3026387788 cites W2963322416 @default.
- W3026387788 cites W2973179594 @default.
- W3026387788 cites W2991448601 @default.
- W3026387788 cites W3100871619 @default.
- W3026387788 cites W3147028311 @default.
- W3026387788 cites W595252221 @default.
- W3026387788 doi "https://doi.org/10.1109/tvt.2020.2996187" @default.
- W3026387788 hasPublicationYear "2020" @default.
- W3026387788 type Work @default.
- W3026387788 sameAs 3026387788 @default.
- W3026387788 citedByCount "40" @default.
- W3026387788 countsByYear W30263877882020 @default.
- W3026387788 countsByYear W30263877882021 @default.
- W3026387788 countsByYear W30263877882022 @default.
- W3026387788 countsByYear W30263877882023 @default.
- W3026387788 crossrefType "journal-article" @default.
- W3026387788 hasAuthorship W3026387788A5033735895 @default.
- W3026387788 hasAuthorship W3026387788A5071237834 @default.
- W3026387788 hasAuthorship W3026387788A5076409244 @default.
- W3026387788 hasAuthorship W3026387788A5091122305 @default.
- W3026387788 hasBestOaLocation W30263877882 @default.
- W3026387788 hasConcept C121332964 @default.
- W3026387788 hasConcept C121704057 @default.
- W3026387788 hasConcept C127413603 @default.
- W3026387788 hasConcept C1276947 @default.
- W3026387788 hasConcept C13662910 @default.
- W3026387788 hasConcept C154945302 @default.
- W3026387788 hasConcept C171146098 @default.
- W3026387788 hasConcept C188116033 @default.
- W3026387788 hasConcept C2780791683 @default.
- W3026387788 hasConcept C38652104 @default.
- W3026387788 hasConcept C41008148 @default.
- W3026387788 hasConcept C45882903 @default.
- W3026387788 hasConcept C62520636 @default.
- W3026387788 hasConcept C97541855 @default.
- W3026387788 hasConceptScore W3026387788C121332964 @default.
- W3026387788 hasConceptScore W3026387788C121704057 @default.
- W3026387788 hasConceptScore W3026387788C127413603 @default.
- W3026387788 hasConceptScore W3026387788C1276947 @default.
- W3026387788 hasConceptScore W3026387788C13662910 @default.
- W3026387788 hasConceptScore W3026387788C154945302 @default.
- W3026387788 hasConceptScore W3026387788C171146098 @default.
- W3026387788 hasConceptScore W3026387788C188116033 @default.
- W3026387788 hasConceptScore W3026387788C2780791683 @default.
- W3026387788 hasConceptScore W3026387788C38652104 @default.
- W3026387788 hasConceptScore W3026387788C41008148 @default.
- W3026387788 hasConceptScore W3026387788C45882903 @default.
- W3026387788 hasConceptScore W3026387788C62520636 @default.
- W3026387788 hasConceptScore W3026387788C97541855 @default.
- W3026387788 hasFunder F4320334627 @default.
- W3026387788 hasIssue "8" @default.
- W3026387788 hasLocation W30263877881 @default.
- W3026387788 hasLocation W30263877882 @default.