Matches in SemOpenAlex for { <https://semopenalex.org/work/W3026468683> ?p ?o ?g. }
- W3026468683 endingPage "821" @default.
- W3026468683 startingPage "812" @default.
- W3026468683 abstract "Drug discovery programs are moving increasingly toward phenotypic imaging assays to model disease-relevant pathways and phenotypes in vitro. These assays offer richer information than target-optimized assays by investigating multiple cellular pathways simultaneously and producing multiplexed readouts. However, extracting the desired information from complex image data poses significant challenges, preventing broad adoption of more sophisticated phenotypic assays. Deep learning-based image analysis can address these challenges by reducing the effort required to analyze large volumes of complex image data at a quality and speed adequate for routine phenotypic screening in pharmaceutical research. However, while general purpose deep learning frameworks are readily available, they are not readily applicable to images from automated microscopy. During the past 3 years, we have optimized deep learning networks for this type of data and validated the approach across diverse assays with several industry partners. From this work, we have extracted five essential design principles that we believe should guide deep learning-based analysis of high-content images and multiparameter data: (1) insightful data representation, (2) automation of training, (3) multilevel quality control, (4) knowledge embedding and transfer to new assays, and (5) enterprise integration. We report a new deep learning-based software that embodies these principles, Genedata Imagence, which allows screening scientists to reliably detect stable endpoints for primary drug response, assess toxicity and safety-relevant effects, and discover new phenotypes and compound classes. Furthermore, we show how the software retains expert knowledge from its training on a particular assay and successfully reapplies it to different, novel assays in an automated fashion." @default.
- W3026468683 created "2020-05-29" @default.
- W3026468683 creator A5018503239 @default.
- W3026468683 creator A5023731360 @default.
- W3026468683 creator A5024389823 @default.
- W3026468683 creator A5038511916 @default.
- W3026468683 creator A5042439253 @default.
- W3026468683 creator A5050338248 @default.
- W3026468683 creator A5057280730 @default.
- W3026468683 creator A5067546198 @default.
- W3026468683 creator A5077587252 @default.
- W3026468683 date "2020-08-01" @default.
- W3026468683 modified "2023-10-06" @default.
- W3026468683 title "Deep Learning-Based HCS Image Analysis for the Enterprise" @default.
- W3026468683 cites W1996564506 @default.
- W3026468683 cites W2052214665 @default.
- W3026468683 cites W2107554012 @default.
- W3026468683 cites W2144963196 @default.
- W3026468683 cites W2337926734 @default.
- W3026468683 cites W2340102874 @default.
- W3026468683 cites W2509141893 @default.
- W3026468683 cites W2588030037 @default.
- W3026468683 cites W2606209624 @default.
- W3026468683 cites W2783679969 @default.
- W3026468683 cites W2803794779 @default.
- W3026468683 cites W2905502540 @default.
- W3026468683 cites W2908632821 @default.
- W3026468683 cites W2919115771 @default.
- W3026468683 cites W2950695830 @default.
- W3026468683 cites W2951748425 @default.
- W3026468683 cites W2952854804 @default.
- W3026468683 cites W2982209755 @default.
- W3026468683 doi "https://doi.org/10.1177/2472555220918837" @default.
- W3026468683 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7372584" @default.
- W3026468683 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32432952" @default.
- W3026468683 hasPublicationYear "2020" @default.
- W3026468683 type Work @default.
- W3026468683 sameAs 3026468683 @default.
- W3026468683 citedByCount "4" @default.
- W3026468683 countsByYear W30264686832020 @default.
- W3026468683 countsByYear W30264686832021 @default.
- W3026468683 countsByYear W30264686832022 @default.
- W3026468683 crossrefType "journal-article" @default.
- W3026468683 hasAuthorship W3026468683A5018503239 @default.
- W3026468683 hasAuthorship W3026468683A5023731360 @default.
- W3026468683 hasAuthorship W3026468683A5024389823 @default.
- W3026468683 hasAuthorship W3026468683A5038511916 @default.
- W3026468683 hasAuthorship W3026468683A5042439253 @default.
- W3026468683 hasAuthorship W3026468683A5050338248 @default.
- W3026468683 hasAuthorship W3026468683A5057280730 @default.
- W3026468683 hasAuthorship W3026468683A5067546198 @default.
- W3026468683 hasAuthorship W3026468683A5077587252 @default.
- W3026468683 hasBestOaLocation W30264686831 @default.
- W3026468683 hasConcept C108583219 @default.
- W3026468683 hasConcept C111472728 @default.
- W3026468683 hasConcept C115901376 @default.
- W3026468683 hasConcept C119857082 @default.
- W3026468683 hasConcept C124101348 @default.
- W3026468683 hasConcept C127413603 @default.
- W3026468683 hasConcept C138885662 @default.
- W3026468683 hasConcept C1491633281 @default.
- W3026468683 hasConcept C150899416 @default.
- W3026468683 hasConcept C154945302 @default.
- W3026468683 hasConcept C157044486 @default.
- W3026468683 hasConcept C199360897 @default.
- W3026468683 hasConcept C2522767166 @default.
- W3026468683 hasConcept C2777904410 @default.
- W3026468683 hasConcept C2779530757 @default.
- W3026468683 hasConcept C41008148 @default.
- W3026468683 hasConcept C54355233 @default.
- W3026468683 hasConcept C60644358 @default.
- W3026468683 hasConcept C70721500 @default.
- W3026468683 hasConcept C74187038 @default.
- W3026468683 hasConcept C78519656 @default.
- W3026468683 hasConcept C86803240 @default.
- W3026468683 hasConceptScore W3026468683C108583219 @default.
- W3026468683 hasConceptScore W3026468683C111472728 @default.
- W3026468683 hasConceptScore W3026468683C115901376 @default.
- W3026468683 hasConceptScore W3026468683C119857082 @default.
- W3026468683 hasConceptScore W3026468683C124101348 @default.
- W3026468683 hasConceptScore W3026468683C127413603 @default.
- W3026468683 hasConceptScore W3026468683C138885662 @default.
- W3026468683 hasConceptScore W3026468683C1491633281 @default.
- W3026468683 hasConceptScore W3026468683C150899416 @default.
- W3026468683 hasConceptScore W3026468683C154945302 @default.
- W3026468683 hasConceptScore W3026468683C157044486 @default.
- W3026468683 hasConceptScore W3026468683C199360897 @default.
- W3026468683 hasConceptScore W3026468683C2522767166 @default.
- W3026468683 hasConceptScore W3026468683C2777904410 @default.
- W3026468683 hasConceptScore W3026468683C2779530757 @default.
- W3026468683 hasConceptScore W3026468683C41008148 @default.
- W3026468683 hasConceptScore W3026468683C54355233 @default.
- W3026468683 hasConceptScore W3026468683C60644358 @default.
- W3026468683 hasConceptScore W3026468683C70721500 @default.
- W3026468683 hasConceptScore W3026468683C74187038 @default.
- W3026468683 hasConceptScore W3026468683C78519656 @default.
- W3026468683 hasConceptScore W3026468683C86803240 @default.
- W3026468683 hasFunder F4320320998 @default.