Matches in SemOpenAlex for { <https://semopenalex.org/work/W3026491484> ?p ?o ?g. }
- W3026491484 endingPage "94088" @default.
- W3026491484 startingPage "94076" @default.
- W3026491484 abstract "The training algorithm of twin least squares support vector regression (TLSSVR) transforms unequal constraints into equal constraints in a pair of quadratic programming problems, it owns faster computational speed. The classical least squares support vector regression (LSSVR) assumpt that the noise is Gaussian with zero mean and the homoscedastic variance. However, it is found that the noise models in some practical applications satisfy Gaussian distribution with zero mean and heteroscedastic variance. In this paper, the LSSVR is combined with the twin hyperplanes, and then an optimal loss function for Gaussian noise with heteroscedasticity is introduced, which is called the twin least squares support vector regression with heteroscedastic Gaussian noise (TLSSVR-HGN). Like LSSVR, TLSSVR-HGN also lacks sparsity. To analyze the generalization ability of the proposed model, the sparse TLSSVR-HGN (STLSSVR-HGN) is proposed with a simple mechanism. The proposed model has been verified using the artificial data set, several benchmark data sets and actual wind speed data. The experimental results show that TLSSVR-HGN is a better technology than the other algorithms." @default.
- W3026491484 created "2020-05-29" @default.
- W3026491484 creator A5004055512 @default.
- W3026491484 creator A5058970337 @default.
- W3026491484 creator A5077282236 @default.
- W3026491484 creator A5081186826 @default.
- W3026491484 date "2020-01-01" @default.
- W3026491484 modified "2023-10-18" @default.
- W3026491484 title "Twin Least Squares Support Vector Regression of Heteroscedastic Gaussian Noise Model" @default.
- W3026491484 cites W1414222439 @default.
- W3026491484 cites W1486089539 @default.
- W3026491484 cites W1934171098 @default.
- W3026491484 cites W1966209552 @default.
- W3026491484 cites W1973560868 @default.
- W3026491484 cites W1973650920 @default.
- W3026491484 cites W1978996791 @default.
- W3026491484 cites W1998848461 @default.
- W3026491484 cites W2017247229 @default.
- W3026491484 cites W2023507239 @default.
- W3026491484 cites W2031161851 @default.
- W3026491484 cites W2032023325 @default.
- W3026491484 cites W2041387425 @default.
- W3026491484 cites W2054939515 @default.
- W3026491484 cites W2056683549 @default.
- W3026491484 cites W2056711126 @default.
- W3026491484 cites W2093804096 @default.
- W3026491484 cites W2096290418 @default.
- W3026491484 cites W2101457442 @default.
- W3026491484 cites W2124351082 @default.
- W3026491484 cites W2125736403 @default.
- W3026491484 cites W2132425109 @default.
- W3026491484 cites W2133042373 @default.
- W3026491484 cites W2139212933 @default.
- W3026491484 cites W2139238144 @default.
- W3026491484 cites W2143833218 @default.
- W3026491484 cites W2156909104 @default.
- W3026491484 cites W2169033885 @default.
- W3026491484 cites W2169540885 @default.
- W3026491484 cites W2170860445 @default.
- W3026491484 cites W2181218332 @default.
- W3026491484 cites W2205533964 @default.
- W3026491484 cites W2270160110 @default.
- W3026491484 cites W2272863569 @default.
- W3026491484 cites W2431193117 @default.
- W3026491484 cites W2765650334 @default.
- W3026491484 cites W2921451329 @default.
- W3026491484 cites W2955544022 @default.
- W3026491484 cites W748179742 @default.
- W3026491484 doi "https://doi.org/10.1109/access.2020.2995615" @default.
- W3026491484 hasPublicationYear "2020" @default.
- W3026491484 type Work @default.
- W3026491484 sameAs 3026491484 @default.
- W3026491484 citedByCount "3" @default.
- W3026491484 countsByYear W30264914842020 @default.
- W3026491484 countsByYear W30264914842022 @default.
- W3026491484 countsByYear W30264914842023 @default.
- W3026491484 crossrefType "journal-article" @default.
- W3026491484 hasAuthorship W3026491484A5004055512 @default.
- W3026491484 hasAuthorship W3026491484A5058970337 @default.
- W3026491484 hasAuthorship W3026491484A5077282236 @default.
- W3026491484 hasAuthorship W3026491484A5081186826 @default.
- W3026491484 hasBestOaLocation W30264914841 @default.
- W3026491484 hasConcept C101104100 @default.
- W3026491484 hasConcept C104409967 @default.
- W3026491484 hasConcept C105795698 @default.
- W3026491484 hasConcept C11413529 @default.
- W3026491484 hasConcept C115961682 @default.
- W3026491484 hasConcept C121332964 @default.
- W3026491484 hasConcept C12267149 @default.
- W3026491484 hasConcept C126255220 @default.
- W3026491484 hasConcept C145828037 @default.
- W3026491484 hasConcept C153180895 @default.
- W3026491484 hasConcept C154945302 @default.
- W3026491484 hasConcept C163716315 @default.
- W3026491484 hasConcept C185429906 @default.
- W3026491484 hasConcept C33923547 @default.
- W3026491484 hasConcept C41008148 @default.
- W3026491484 hasConcept C4199805 @default.
- W3026491484 hasConcept C62520636 @default.
- W3026491484 hasConcept C81845259 @default.
- W3026491484 hasConcept C9936470 @default.
- W3026491484 hasConcept C99498987 @default.
- W3026491484 hasConceptScore W3026491484C101104100 @default.
- W3026491484 hasConceptScore W3026491484C104409967 @default.
- W3026491484 hasConceptScore W3026491484C105795698 @default.
- W3026491484 hasConceptScore W3026491484C11413529 @default.
- W3026491484 hasConceptScore W3026491484C115961682 @default.
- W3026491484 hasConceptScore W3026491484C121332964 @default.
- W3026491484 hasConceptScore W3026491484C12267149 @default.
- W3026491484 hasConceptScore W3026491484C126255220 @default.
- W3026491484 hasConceptScore W3026491484C145828037 @default.
- W3026491484 hasConceptScore W3026491484C153180895 @default.
- W3026491484 hasConceptScore W3026491484C154945302 @default.
- W3026491484 hasConceptScore W3026491484C163716315 @default.
- W3026491484 hasConceptScore W3026491484C185429906 @default.
- W3026491484 hasConceptScore W3026491484C33923547 @default.
- W3026491484 hasConceptScore W3026491484C41008148 @default.
- W3026491484 hasConceptScore W3026491484C4199805 @default.