Matches in SemOpenAlex for { <https://semopenalex.org/work/W3026552571> ?p ?o ?g. }
- W3026552571 endingPage "165012" @default.
- W3026552571 startingPage "165012" @default.
- W3026552571 abstract "Metal artifacts present a challenge to cone-beam CT (CBCT) image-guided surgery, obscuring visualization of metal instruments and adjacent anatomy-often in the very region of interest pertinent to the imaging/surgical tasks. We present a method to reduce the influence of metal artifacts by prospectively defining an image acquisition protocol-viz., the C-arm source-detector orbit-that mitigates metal-induced biases in the projection data. The metal artifact avoidance (MAA) method is compatible with simple mobile C-arms, does not require exact prior information on the patient or metal implants, and is consistent with 3D filtered backprojection (FBP), more advanced (e.g. polyenergetic) model-based image reconstruction (MBIR), and metal artifact reduction (MAR) post-processing methods. The MAA method consists of: (i) coarse localization of metal objects in the field-of-view (FOV) via two or more low-dose scout projection views and segmentation (e.g. a simple U-Net) in coarse backprojection; (ii) model-based prediction of metal-induced x-ray spectral shift for all source-detector vertices accessible by the imaging system (e.g. gantry rotation and tilt angles); and (iii) identification of a circular or non-circular orbit that reduces the variation in spectral shift. The method was developed, tested, and evaluated in a series of studies presenting increasing levels of complexity and realism, including digital simulations, phantom experiment, and cadaver experiment in the context of image-guided spine surgery (pedicle screw implants). The MAA method accurately predicted tilted circular and non-circular orbits that reduced the magnitude of metal artifacts in CBCT reconstructions. Realistic distributions of metal instrumentation were successfully localized (0.71 median Dice coefficient) from 2-6 low-dose scout views even in complex anatomical scenes. The MAA-predicted tilted circular orbits reduced root-mean-square error (RMSE) in 3D image reconstructions by 46%-70% and 'blooming' artifacts (apparent width of the screw shaft) by 20-45%. Non-circular orbits defined by MAA achieved a further ∼46% reduction in RMSE compared to the best (tilted) circular orbit. The MAA method presents a practical means to predict C-arm orbits that minimize spectral bias from metal instrumentation. Resulting orbits-either simple tilted circular orbits or more complex non-circular orbits that can be executed with a motorized multi-axis C-arm-exhibited substantial reduction of metal artifacts in raw CBCT reconstructions by virtue of higher fidelity projection data, which are in turn compatible with subsequent MAR post-processing and/or polyenergetic MBIR to further reduce artifacts." @default.
- W3026552571 created "2020-05-29" @default.
- W3026552571 creator A5009793323 @default.
- W3026552571 creator A5010536842 @default.
- W3026552571 creator A5012624684 @default.
- W3026552571 creator A5029218065 @default.
- W3026552571 creator A5029253617 @default.
- W3026552571 creator A5043476692 @default.
- W3026552571 creator A5054749088 @default.
- W3026552571 creator A5058183994 @default.
- W3026552571 creator A5059446227 @default.
- W3026552571 creator A5060018462 @default.
- W3026552571 creator A5067588445 @default.
- W3026552571 creator A5068070550 @default.
- W3026552571 creator A5068768205 @default.
- W3026552571 creator A5089623752 @default.
- W3026552571 date "2020-08-19" @default.
- W3026552571 modified "2023-10-10" @default.
- W3026552571 title "C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT" @default.
- W3026552571 cites W1493336793 @default.
- W3026552571 cites W1605438009 @default.
- W3026552571 cites W1677182931 @default.
- W3026552571 cites W1863867878 @default.
- W3026552571 cites W1877533901 @default.
- W3026552571 cites W1971993896 @default.
- W3026552571 cites W1975359074 @default.
- W3026552571 cites W1975563492 @default.
- W3026552571 cites W1978768524 @default.
- W3026552571 cites W2000441297 @default.
- W3026552571 cites W2006461826 @default.
- W3026552571 cites W2032237670 @default.
- W3026552571 cites W2034280206 @default.
- W3026552571 cites W2042852309 @default.
- W3026552571 cites W2048474363 @default.
- W3026552571 cites W2055483062 @default.
- W3026552571 cites W2060686929 @default.
- W3026552571 cites W2067897254 @default.
- W3026552571 cites W2072807187 @default.
- W3026552571 cites W2079127706 @default.
- W3026552571 cites W2082512673 @default.
- W3026552571 cites W2086514668 @default.
- W3026552571 cites W2095757123 @default.
- W3026552571 cites W2101891472 @default.
- W3026552571 cites W2104455572 @default.
- W3026552571 cites W2114419957 @default.
- W3026552571 cites W2142690659 @default.
- W3026552571 cites W2149508994 @default.
- W3026552571 cites W2151359544 @default.
- W3026552571 cites W2161652483 @default.
- W3026552571 cites W2165152729 @default.
- W3026552571 cites W2167036988 @default.
- W3026552571 cites W2167851738 @default.
- W3026552571 cites W2317884369 @default.
- W3026552571 cites W2483704245 @default.
- W3026552571 cites W2590852980 @default.
- W3026552571 cites W2734349601 @default.
- W3026552571 cites W2753044865 @default.
- W3026552571 cites W2766371297 @default.
- W3026552571 cites W2767993522 @default.
- W3026552571 cites W2901185057 @default.
- W3026552571 cites W2942812018 @default.
- W3026552571 cites W2944584091 @default.
- W3026552571 cites W2947169960 @default.
- W3026552571 cites W2947400643 @default.
- W3026552571 cites W2957412962 @default.
- W3026552571 cites W2996518595 @default.
- W3026552571 cites W3010984050 @default.
- W3026552571 cites W3012372968 @default.
- W3026552571 cites W4292101282 @default.
- W3026552571 doi "https://doi.org/10.1088/1361-6560/ab9454" @default.
- W3026552571 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32428891" @default.
- W3026552571 hasPublicationYear "2020" @default.
- W3026552571 type Work @default.
- W3026552571 sameAs 3026552571 @default.
- W3026552571 citedByCount "14" @default.
- W3026552571 countsByYear W30265525712020 @default.
- W3026552571 countsByYear W30265525712021 @default.
- W3026552571 countsByYear W30265525712022 @default.
- W3026552571 countsByYear W30265525712023 @default.
- W3026552571 crossrefType "journal-article" @default.
- W3026552571 hasAuthorship W3026552571A5009793323 @default.
- W3026552571 hasAuthorship W3026552571A5010536842 @default.
- W3026552571 hasAuthorship W3026552571A5012624684 @default.
- W3026552571 hasAuthorship W3026552571A5029218065 @default.
- W3026552571 hasAuthorship W3026552571A5029253617 @default.
- W3026552571 hasAuthorship W3026552571A5043476692 @default.
- W3026552571 hasAuthorship W3026552571A5054749088 @default.
- W3026552571 hasAuthorship W3026552571A5058183994 @default.
- W3026552571 hasAuthorship W3026552571A5059446227 @default.
- W3026552571 hasAuthorship W3026552571A5060018462 @default.
- W3026552571 hasAuthorship W3026552571A5067588445 @default.
- W3026552571 hasAuthorship W3026552571A5068070550 @default.
- W3026552571 hasAuthorship W3026552571A5068768205 @default.
- W3026552571 hasAuthorship W3026552571A5089623752 @default.
- W3026552571 hasBestOaLocation W30265525712 @default.
- W3026552571 hasConcept C104293457 @default.
- W3026552571 hasConcept C11413529 @default.
- W3026552571 hasConcept C120665830 @default.