Matches in SemOpenAlex for { <https://semopenalex.org/work/W3026618054> ?p ?o ?g. }
- W3026618054 abstract "Abstract Background Bacterial biofilms are communities of surface-associated microorganisms living in cellular clusters or micro-colonies, encapsulated in a complex matrix composed of an extracellular polymeric substance, separated by open water channels that act as a circulatory system that enable better diffusion of nutrients and easier removal of metabolic waste products. The monitoring of biofilms can provide important information on fundamental biofilm-related processes. That information can shed light on the bacterial processes and enable scientists to find ways of preventing future bacterial infections. Various approaches in use for biofilm analysis are based on microscopic, spectrochemical, electrochemical, and piezoelectrical methods. All these methods provide significant progress in understanding the bio-process related to biofilm formation and eradication, nevertheless, the development of novel approaches for the real-time monitoring of biochemical, in particular metabolic activity, of bacterial species during the formation, life and eradication of biofilms is of great potential importance. Results Here, detection and monitoring of the metabolic activity of bacterial biofilms in high-ionic-strength solutions were enabled as a result of novel surface modification by an active redox system, composed of 9,10-dihydroxyanthracene/9,10-anthraquinone, on the oxide layer of the SiNW, yielding a chemically-gated FET array. With the use of enzymatic reactions of oxidases, metabolites can be converted to H 2 O 2 and monitored by the nanosensors. Here, the successful detection of glucose metabolites in high-ionic-strength solutions, such as bacterial media, without pre-processing of small volume samples under different conditions and treatments, has been demonstrated. The biofilms were treated with antibiotics differing in their mechanisms of action and were compared to untreated biofilms. Further examination of biofilms under antibiotic treatment with SiNW-FET devices could shed light on the bioprocess that occurs within the biofilm. Moreover, finding proper treatment that eliminates the biofilm could be examined by the novel nanosensor as a monitoring tool. Conclusions To summarize, the combination of redox-reactive SiNW-FET devices with micro-fluidic techniques enables the performance of rapid, automated, and real-time metabolite detection with the use of minimal sample size, noninvasively and label-free. This novel platform can be used as an extremely sensitive tool for detection and establishing medical solutions for bacterial-biofilm eradication and for finding a proper treatment to eliminate biofilm contaminations. Moreover, the sensing system can be used as a research tool for further understanding of the metabolic processes that occur within the bacterial biofilm population." @default.
- W3026618054 created "2020-05-29" @default.
- W3026618054 creator A5054718810 @default.
- W3026618054 creator A5057848755 @default.
- W3026618054 creator A5081316368 @default.
- W3026618054 creator A5087957946 @default.
- W3026618054 date "2020-05-24" @default.
- W3026618054 modified "2023-10-18" @default.
- W3026618054 title "Real-time monitoring of bacterial biofilms metabolic activity by a redox-reactive nanosensors array" @default.
- W3026618054 cites W1532541041 @default.
- W3026618054 cites W1583991429 @default.
- W3026618054 cites W1598232785 @default.
- W3026618054 cites W1631284235 @default.
- W3026618054 cites W1968221386 @default.
- W3026618054 cites W1979721656 @default.
- W3026618054 cites W1979848820 @default.
- W3026618054 cites W1981369081 @default.
- W3026618054 cites W1987416224 @default.
- W3026618054 cites W1991542991 @default.
- W3026618054 cites W2000812746 @default.
- W3026618054 cites W2001270915 @default.
- W3026618054 cites W2010779233 @default.
- W3026618054 cites W2013603222 @default.
- W3026618054 cites W2014732378 @default.
- W3026618054 cites W2019735808 @default.
- W3026618054 cites W2034687443 @default.
- W3026618054 cites W2042228370 @default.
- W3026618054 cites W2045787342 @default.
- W3026618054 cites W2047244473 @default.
- W3026618054 cites W2048686116 @default.
- W3026618054 cites W2049033916 @default.
- W3026618054 cites W2049389752 @default.
- W3026618054 cites W2053192345 @default.
- W3026618054 cites W2058029133 @default.
- W3026618054 cites W2058420239 @default.
- W3026618054 cites W2068186398 @default.
- W3026618054 cites W2072669078 @default.
- W3026618054 cites W2079148569 @default.
- W3026618054 cites W2080936059 @default.
- W3026618054 cites W2091578530 @default.
- W3026618054 cites W2093421311 @default.
- W3026618054 cites W2100287000 @default.
- W3026618054 cites W2103278057 @default.
- W3026618054 cites W2109726105 @default.
- W3026618054 cites W2113790776 @default.
- W3026618054 cites W2113835956 @default.
- W3026618054 cites W2113838337 @default.
- W3026618054 cites W2118480113 @default.
- W3026618054 cites W2127535305 @default.
- W3026618054 cites W2129858839 @default.
- W3026618054 cites W2130686586 @default.
- W3026618054 cites W2141469073 @default.
- W3026618054 cites W2149562261 @default.
- W3026618054 cites W2152587744 @default.
- W3026618054 cites W2160455253 @default.
- W3026618054 cites W2165161053 @default.
- W3026618054 cites W2277045183 @default.
- W3026618054 cites W2315918862 @default.
- W3026618054 cites W2331815614 @default.
- W3026618054 cites W2518205861 @default.
- W3026618054 cites W2766154231 @default.
- W3026618054 cites W2771102645 @default.
- W3026618054 cites W2922407354 @default.
- W3026618054 cites W2951062193 @default.
- W3026618054 cites W2965936343 @default.
- W3026618054 cites W3009757488 @default.
- W3026618054 cites W4231863947 @default.
- W3026618054 doi "https://doi.org/10.1186/s12951-020-00637-y" @default.
- W3026618054 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7247256" @default.
- W3026618054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32448291" @default.
- W3026618054 hasPublicationYear "2020" @default.
- W3026618054 type Work @default.
- W3026618054 sameAs 3026618054 @default.
- W3026618054 citedByCount "16" @default.
- W3026618054 countsByYear W30266180542021 @default.
- W3026618054 countsByYear W30266180542022 @default.
- W3026618054 countsByYear W30266180542023 @default.
- W3026618054 crossrefType "journal-article" @default.
- W3026618054 hasAuthorship W3026618054A5054718810 @default.
- W3026618054 hasAuthorship W3026618054A5057848755 @default.
- W3026618054 hasAuthorship W3026618054A5081316368 @default.
- W3026618054 hasAuthorship W3026618054A5087957946 @default.
- W3026618054 hasBestOaLocation W30266180541 @default.
- W3026618054 hasConcept C12554922 @default.
- W3026618054 hasConcept C129968341 @default.
- W3026618054 hasConcept C171250308 @default.
- W3026618054 hasConcept C17741926 @default.
- W3026618054 hasConcept C179104552 @default.
- W3026618054 hasConcept C185592680 @default.
- W3026618054 hasConcept C186060115 @default.
- W3026618054 hasConcept C192562407 @default.
- W3026618054 hasConcept C2779251873 @default.
- W3026618054 hasConcept C2779477270 @default.
- W3026618054 hasConcept C2993927895 @default.
- W3026618054 hasConcept C41858301 @default.
- W3026618054 hasConcept C523546767 @default.
- W3026618054 hasConcept C54355233 @default.
- W3026618054 hasConcept C55493867 @default.
- W3026618054 hasConcept C55904794 @default.
- W3026618054 hasConcept C58123911 @default.