Matches in SemOpenAlex for { <https://semopenalex.org/work/W3026705323> ?p ?o ?g. }
- W3026705323 abstract "Intrusion detection is one of the primary mechanisms to provide computer networks with security. With an increase in attacks and growing dependence on various fields such as medicine, commercial, and engineering to give services over a network, securing networks have become a significant issue. The purpose of Intrusion Detection Systems (IDS) is to make models which can recognize regular communications from abnormal ones and take necessary actions. Among different methods in this field, Artificial Neural Networks (ANNs) have been widely used. However, ANN-based IDS, has two main disadvantages: 1- Low detection precision. 2- Weak detection stability. To overcome these issues, this paper proposes a new approach based on Deep Neural Network (DNN. The general mechanism of our model is as follows: first, some of the data in dataset is properly ranked, afterwards, dataset is normalized with Min-Max normalizer to fit in the limited domain. Then dimensionality reduction is applied to decrease the amount of both useless dimensions and computational cost. After the preprocessing part, Mean-Shift clustering algorithm is the used to create different subsets and reduce the complexity of dataset. Based on each subset, two models are trained by Support Vector Machine (SVM) and deep learning method. Between two models for each subset, the model with a higher accuracy is chosen. This idea is inspired from philosophy of divide and conquer. Hence, the DNN can learn each subset quickly and robustly. Finally, to reduce the error from the previous step, an ANN model is trained to gain and use the results in order to be able to predict the attacks. We can reach to 95.4 percent of accuracy. Possessing a simple structure and less number of tunable parameters, the proposed model still has a grand generalization with a high level of accuracy in compared to other methods such as SVM, Bayes network, and STL." @default.
- W3026705323 created "2020-05-29" @default.
- W3026705323 creator A5002674796 @default.
- W3026705323 creator A5051122758 @default.
- W3026705323 date "2020-05-19" @default.
- W3026705323 modified "2023-09-27" @default.
- W3026705323 title "A cognitive based Intrusion detection system." @default.
- W3026705323 cites W1493775511 @default.
- W3026705323 cites W1887038067 @default.
- W3026705323 cites W1964793108 @default.
- W3026705323 cites W2007087405 @default.
- W3026705323 cites W2038626915 @default.
- W3026705323 cites W2050672458 @default.
- W3026705323 cites W2099940443 @default.
- W3026705323 cites W2142720090 @default.
- W3026705323 cites W2150847526 @default.
- W3026705323 cites W2156909104 @default.
- W3026705323 cites W2277123420 @default.
- W3026705323 cites W2342408547 @default.
- W3026705323 cites W2399941526 @default.
- W3026705323 cites W2414564754 @default.
- W3026705323 cites W2529525882 @default.
- W3026705323 cites W2560162835 @default.
- W3026705323 cites W2576897537 @default.
- W3026705323 cites W2762776925 @default.
- W3026705323 cites W2783741806 @default.
- W3026705323 cites W2794786524 @default.
- W3026705323 cites W2895790510 @default.
- W3026705323 cites W3214373139 @default.
- W3026705323 cites W125870180 @default.
- W3026705323 cites W2125669971 @default.
- W3026705323 hasPublicationYear "2020" @default.
- W3026705323 type Work @default.
- W3026705323 sameAs 3026705323 @default.
- W3026705323 citedByCount "0" @default.
- W3026705323 crossrefType "posted-content" @default.
- W3026705323 hasAuthorship W3026705323A5002674796 @default.
- W3026705323 hasAuthorship W3026705323A5051122758 @default.
- W3026705323 hasConcept C111030470 @default.
- W3026705323 hasConcept C112972136 @default.
- W3026705323 hasConcept C11413529 @default.
- W3026705323 hasConcept C119857082 @default.
- W3026705323 hasConcept C12267149 @default.
- W3026705323 hasConcept C124101348 @default.
- W3026705323 hasConcept C153180895 @default.
- W3026705323 hasConcept C154945302 @default.
- W3026705323 hasConcept C202444582 @default.
- W3026705323 hasConcept C33923547 @default.
- W3026705323 hasConcept C34736171 @default.
- W3026705323 hasConcept C35525427 @default.
- W3026705323 hasConcept C41008148 @default.
- W3026705323 hasConcept C50644808 @default.
- W3026705323 hasConcept C70518039 @default.
- W3026705323 hasConcept C71559656 @default.
- W3026705323 hasConcept C73555534 @default.
- W3026705323 hasConcept C9652623 @default.
- W3026705323 hasConceptScore W3026705323C111030470 @default.
- W3026705323 hasConceptScore W3026705323C112972136 @default.
- W3026705323 hasConceptScore W3026705323C11413529 @default.
- W3026705323 hasConceptScore W3026705323C119857082 @default.
- W3026705323 hasConceptScore W3026705323C12267149 @default.
- W3026705323 hasConceptScore W3026705323C124101348 @default.
- W3026705323 hasConceptScore W3026705323C153180895 @default.
- W3026705323 hasConceptScore W3026705323C154945302 @default.
- W3026705323 hasConceptScore W3026705323C202444582 @default.
- W3026705323 hasConceptScore W3026705323C33923547 @default.
- W3026705323 hasConceptScore W3026705323C34736171 @default.
- W3026705323 hasConceptScore W3026705323C35525427 @default.
- W3026705323 hasConceptScore W3026705323C41008148 @default.
- W3026705323 hasConceptScore W3026705323C50644808 @default.
- W3026705323 hasConceptScore W3026705323C70518039 @default.
- W3026705323 hasConceptScore W3026705323C71559656 @default.
- W3026705323 hasConceptScore W3026705323C73555534 @default.
- W3026705323 hasConceptScore W3026705323C9652623 @default.
- W3026705323 hasLocation W30267053231 @default.
- W3026705323 hasOpenAccess W3026705323 @default.
- W3026705323 hasPrimaryLocation W30267053231 @default.
- W3026705323 hasRelatedWork W2187194862 @default.
- W3026705323 hasRelatedWork W2438424254 @default.
- W3026705323 hasRelatedWork W2569873096 @default.
- W3026705323 hasRelatedWork W2784037899 @default.
- W3026705323 hasRelatedWork W2930296890 @default.
- W3026705323 hasRelatedWork W2945770688 @default.
- W3026705323 hasRelatedWork W2953054173 @default.
- W3026705323 hasRelatedWork W2979486139 @default.
- W3026705323 hasRelatedWork W3008608776 @default.
- W3026705323 hasRelatedWork W3098309759 @default.
- W3026705323 hasRelatedWork W3109608767 @default.
- W3026705323 hasRelatedWork W3131088496 @default.
- W3026705323 hasRelatedWork W3154188710 @default.
- W3026705323 hasRelatedWork W3163164343 @default.
- W3026705323 hasRelatedWork W3163315201 @default.
- W3026705323 hasRelatedWork W3202618652 @default.
- W3026705323 hasRelatedWork W3205915851 @default.
- W3026705323 hasRelatedWork W2187045890 @default.
- W3026705323 hasRelatedWork W2340057404 @default.
- W3026705323 hasRelatedWork W2439402361 @default.
- W3026705323 isParatext "false" @default.
- W3026705323 isRetracted "false" @default.
- W3026705323 magId "3026705323" @default.