Matches in SemOpenAlex for { <https://semopenalex.org/work/W3026856545> ?p ?o ?g. }
- W3026856545 endingPage "403" @default.
- W3026856545 startingPage "383" @default.
- W3026856545 abstract "In the past, several experimental and theoretical studies have been carried out to evaluate the ultimate bearing capacity (UBC) of geosynthetic-reinforced sandy soil foundations (GRSSFs). The experimental studies consist of model footing load tests which are expensive and time consuming whereas the results obtained by theoretical expressions often lack consistency. In the study reported in this paper, a cost-effective, extreme learning machine (ELM) model was used for the first time to obtain a more realistic prediction of the UBC of a GRSSF. A large dataset consisting of actual field and laboratory measurements of UBC was used to develop and validate the model. Its predictive performance was then compared against robust machine learning regression models and traditional theoretical methods. The study shows that the proposed model is useful and attains an adequate level of accuracy in predicting the UBC of GRSSFs when compared with other data-driven models and some traditional methods. The research also shows that the ELM technique is a realistic and reliable approach that could be employed in geotechnical engineering intelligent systems for the prediction of multivariate non-linear problems." @default.
- W3026856545 created "2020-05-29" @default.
- W3026856545 creator A5008975436 @default.
- W3026856545 creator A5082107458 @default.
- W3026856545 date "2022-08-01" @default.
- W3026856545 modified "2023-10-17" @default.
- W3026856545 title "An extreme learning machine model for geosynthetic-reinforced sandy soil foundations" @default.
- W3026856545 cites W1202743199 @default.
- W3026856545 cites W1516277321 @default.
- W3026856545 cites W1542283340 @default.
- W3026856545 cites W1577991180 @default.
- W3026856545 cites W1678356000 @default.
- W3026856545 cites W1831050183 @default.
- W3026856545 cites W1845010849 @default.
- W3026856545 cites W1964351308 @default.
- W3026856545 cites W1964357740 @default.
- W3026856545 cites W1965895201 @default.
- W3026856545 cites W1974360374 @default.
- W3026856545 cites W1975088683 @default.
- W3026856545 cites W1975437878 @default.
- W3026856545 cites W1978820282 @default.
- W3026856545 cites W1980225742 @default.
- W3026856545 cites W1987557628 @default.
- W3026856545 cites W1989784053 @default.
- W3026856545 cites W1993717606 @default.
- W3026856545 cites W1994771072 @default.
- W3026856545 cites W1996829120 @default.
- W3026856545 cites W2007007819 @default.
- W3026856545 cites W2014617896 @default.
- W3026856545 cites W2014925969 @default.
- W3026856545 cites W2019797988 @default.
- W3026856545 cites W2020738457 @default.
- W3026856545 cites W2025224198 @default.
- W3026856545 cites W2027983628 @default.
- W3026856545 cites W2035730886 @default.
- W3026856545 cites W2037460094 @default.
- W3026856545 cites W2038453704 @default.
- W3026856545 cites W2039037503 @default.
- W3026856545 cites W2046421825 @default.
- W3026856545 cites W2048165934 @default.
- W3026856545 cites W2050960141 @default.
- W3026856545 cites W2061269631 @default.
- W3026856545 cites W2068046269 @default.
- W3026856545 cites W2076414928 @default.
- W3026856545 cites W2082979048 @default.
- W3026856545 cites W2093944882 @default.
- W3026856545 cites W2097220296 @default.
- W3026856545 cites W2102201073 @default.
- W3026856545 cites W2108223084 @default.
- W3026856545 cites W2111072639 @default.
- W3026856545 cites W2118593595 @default.
- W3026856545 cites W2121971770 @default.
- W3026856545 cites W2124549185 @default.
- W3026856545 cites W2125223451 @default.
- W3026856545 cites W2129717411 @default.
- W3026856545 cites W2147746661 @default.
- W3026856545 cites W2536008880 @default.
- W3026856545 cites W2556373498 @default.
- W3026856545 cites W2565361119 @default.
- W3026856545 cites W2607463055 @default.
- W3026856545 cites W2774052175 @default.
- W3026856545 cites W2885154095 @default.
- W3026856545 cites W2955824467 @default.
- W3026856545 cites W2957439292 @default.
- W3026856545 cites W2996160233 @default.
- W3026856545 cites W3000332379 @default.
- W3026856545 cites W3123118958 @default.
- W3026856545 cites W836867855 @default.
- W3026856545 doi "https://doi.org/10.1680/jgeen.19.00297" @default.
- W3026856545 hasPublicationYear "2022" @default.
- W3026856545 type Work @default.
- W3026856545 sameAs 3026856545 @default.
- W3026856545 citedByCount "27" @default.
- W3026856545 countsByYear W30268565452020 @default.
- W3026856545 countsByYear W30268565452021 @default.
- W3026856545 countsByYear W30268565452022 @default.
- W3026856545 countsByYear W30268565452023 @default.
- W3026856545 crossrefType "journal-article" @default.
- W3026856545 hasAuthorship W3026856545A5008975436 @default.
- W3026856545 hasAuthorship W3026856545A5082107458 @default.
- W3026856545 hasConcept C119857082 @default.
- W3026856545 hasConcept C12267149 @default.
- W3026856545 hasConcept C124101348 @default.
- W3026856545 hasConcept C127413603 @default.
- W3026856545 hasConcept C154945302 @default.
- W3026856545 hasConcept C161584116 @default.
- W3026856545 hasConcept C187320778 @default.
- W3026856545 hasConcept C202444582 @default.
- W3026856545 hasConcept C2776436953 @default.
- W3026856545 hasConcept C2780150128 @default.
- W3026856545 hasConcept C33923547 @default.
- W3026856545 hasConcept C41008148 @default.
- W3026856545 hasConcept C45804977 @default.
- W3026856545 hasConcept C50644808 @default.
- W3026856545 hasConcept C9652623 @default.
- W3026856545 hasConceptScore W3026856545C119857082 @default.
- W3026856545 hasConceptScore W3026856545C12267149 @default.
- W3026856545 hasConceptScore W3026856545C124101348 @default.