Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027023150> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3027023150 abstract "In this paper, we propose a framework for accelerated reconstruction of 2D phase contrast magnetic resonance images from undersampled k-space domain by using deep learning methods. Undersampling in k-space violates Nyquist Sampling and creates artifacts in the image domain. In the proposed method, we consider the reconstruction problem as a de-aliasing problem in complex spatial domain. To test the proposed method, from fully sampled k-space data undersampling in k-space was performed in the phase-encode direction based on a probability density function which ensures maximum rate of sampling in low frequency regions. For the deep convolutional neural network (CNN) we chose the U-net architecture. The proposed CNN was trained and tested on 4D flow MRI data in 14 subjects with aortic stenosis. The reconstructed complex two channel image showed that the U-net is able to unaliase the undersampled flow images with resulting magnitude and phase difference images showing good agreement with the fully sampled magnitude and phase images. We show that the proposed method outperforms 2D compressed sensing approach of spatial total variation regularization method. Flow waveforms derived from reconstructed images closely follow flow waveforms derived from the original data. Moreover, the method is computationally fast. Each 2D magnitude and phase image is reconstructed within a second using a single GPU." @default.
- W3027023150 created "2020-05-29" @default.
- W3027023150 creator A5000662655 @default.
- W3027023150 creator A5005411439 @default.
- W3027023150 creator A5020266605 @default.
- W3027023150 creator A5025347131 @default.
- W3027023150 creator A5038392813 @default.
- W3027023150 date "2020-04-01" @default.
- W3027023150 modified "2023-09-25" @default.
- W3027023150 title "Accelerated Phase Contrast Magnetic Resonance Imaging via Deep Learning" @default.
- W3027023150 cites W1573122968 @default.
- W3027023150 cites W1982376581 @default.
- W3027023150 cites W2041883052 @default.
- W3027023150 cites W2055461628 @default.
- W3027023150 cites W2085578459 @default.
- W3027023150 cites W2099606529 @default.
- W3027023150 cites W2101675075 @default.
- W3027023150 cites W2134709742 @default.
- W3027023150 cites W2136647048 @default.
- W3027023150 cites W2142058898 @default.
- W3027023150 cites W2149855549 @default.
- W3027023150 cites W2442117232 @default.
- W3027023150 cites W2592027625 @default.
- W3027023150 cites W2594014149 @default.
- W3027023150 cites W2963682501 @default.
- W3027023150 cites W2963910090 @default.
- W3027023150 cites W2966853537 @default.
- W3027023150 cites W2995924659 @default.
- W3027023150 cites W3105403262 @default.
- W3027023150 doi "https://doi.org/10.1109/isbi45749.2020.9098508" @default.
- W3027023150 hasPublicationYear "2020" @default.
- W3027023150 type Work @default.
- W3027023150 sameAs 3027023150 @default.
- W3027023150 citedByCount "9" @default.
- W3027023150 countsByYear W30270231502020 @default.
- W3027023150 countsByYear W30270231502021 @default.
- W3027023150 countsByYear W30270231502022 @default.
- W3027023150 countsByYear W30270231502023 @default.
- W3027023150 crossrefType "proceedings-article" @default.
- W3027023150 hasAuthorship W3027023150A5000662655 @default.
- W3027023150 hasAuthorship W3027023150A5005411439 @default.
- W3027023150 hasAuthorship W3027023150A5020266605 @default.
- W3027023150 hasAuthorship W3027023150A5025347131 @default.
- W3027023150 hasAuthorship W3027023150A5038392813 @default.
- W3027023150 hasConcept C106131492 @default.
- W3027023150 hasConcept C108583219 @default.
- W3027023150 hasConcept C11413529 @default.
- W3027023150 hasConcept C124851039 @default.
- W3027023150 hasConcept C136536468 @default.
- W3027023150 hasConcept C140779682 @default.
- W3027023150 hasConcept C141379421 @default.
- W3027023150 hasConcept C153180895 @default.
- W3027023150 hasConcept C154945302 @default.
- W3027023150 hasConcept C19118579 @default.
- W3027023150 hasConcept C31972630 @default.
- W3027023150 hasConcept C4069607 @default.
- W3027023150 hasConcept C41008148 @default.
- W3027023150 hasConcept C65914096 @default.
- W3027023150 hasConcept C81363708 @default.
- W3027023150 hasConceptScore W3027023150C106131492 @default.
- W3027023150 hasConceptScore W3027023150C108583219 @default.
- W3027023150 hasConceptScore W3027023150C11413529 @default.
- W3027023150 hasConceptScore W3027023150C124851039 @default.
- W3027023150 hasConceptScore W3027023150C136536468 @default.
- W3027023150 hasConceptScore W3027023150C140779682 @default.
- W3027023150 hasConceptScore W3027023150C141379421 @default.
- W3027023150 hasConceptScore W3027023150C153180895 @default.
- W3027023150 hasConceptScore W3027023150C154945302 @default.
- W3027023150 hasConceptScore W3027023150C19118579 @default.
- W3027023150 hasConceptScore W3027023150C31972630 @default.
- W3027023150 hasConceptScore W3027023150C4069607 @default.
- W3027023150 hasConceptScore W3027023150C41008148 @default.
- W3027023150 hasConceptScore W3027023150C65914096 @default.
- W3027023150 hasConceptScore W3027023150C81363708 @default.
- W3027023150 hasLocation W30270231501 @default.
- W3027023150 hasOpenAccess W3027023150 @default.
- W3027023150 hasPrimaryLocation W30270231501 @default.
- W3027023150 hasRelatedWork W1999371807 @default.
- W3027023150 hasRelatedWork W2033162169 @default.
- W3027023150 hasRelatedWork W2086739368 @default.
- W3027023150 hasRelatedWork W2168668658 @default.
- W3027023150 hasRelatedWork W2183957246 @default.
- W3027023150 hasRelatedWork W2810003382 @default.
- W3027023150 hasRelatedWork W2898888166 @default.
- W3027023150 hasRelatedWork W2981006997 @default.
- W3027023150 hasRelatedWork W3214931932 @default.
- W3027023150 hasRelatedWork W4230961646 @default.
- W3027023150 isParatext "false" @default.
- W3027023150 isRetracted "false" @default.
- W3027023150 magId "3027023150" @default.
- W3027023150 workType "article" @default.