Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027166080> ?p ?o ?g. }
- W3027166080 endingPage "326" @default.
- W3027166080 startingPage "315" @default.
- W3027166080 abstract "A cascade of global context convolutional neural networks is proposed to segment multi-modality MR images with brain tumor into three subregions: enhancing tumor, whole tumor and tumor core. Each network is a modification of the 3D U-Net consisting of residual connection, group normalization and deep supervision. In addition, we apply Global Context (GC) block to capture long-range dependency and inter-channel dependency. We use a combination of logarithmic Dice loss and weighted cross entropy loss to focus on less accurate voxels and improve the accuracy. Experiments with BraTS 2019 validation set show the proposed method achieved average Dice scores of 0.77338, 0.90712, 0.83911 for enhancing tumor, whole tumor and tumor core, respectively. The corresponding values for BraTS 2019 testing set were 0.79303, 0.87962, 0.82887 for enhancing tumor, whole tumor and tumor core, respectively." @default.
- W3027166080 created "2020-05-29" @default.
- W3027166080 creator A5019356193 @default.
- W3027166080 creator A5029722566 @default.
- W3027166080 creator A5074391946 @default.
- W3027166080 creator A5089323841 @default.
- W3027166080 date "2020-01-01" @default.
- W3027166080 modified "2023-09-28" @default.
- W3027166080 title "Cascaded Global Context Convolutional Neural Network for Brain Tumor Segmentation" @default.
- W3027166080 cites W1901129140 @default.
- W3027166080 cites W1903029394 @default.
- W3027166080 cites W197014098 @default.
- W3027166080 cites W2194775991 @default.
- W3027166080 cites W2301358467 @default.
- W3027166080 cites W2464708700 @default.
- W3027166080 cites W2737725206 @default.
- W3027166080 cites W2751069891 @default.
- W3027166080 cites W2751909359 @default.
- W3027166080 cites W2752782242 @default.
- W3027166080 cites W2767623272 @default.
- W3027166080 cites W2891155035 @default.
- W3027166080 cites W2963046541 @default.
- W3027166080 cites W2963091558 @default.
- W3027166080 cites W2963717741 @default.
- W3027166080 cites W2964980777 @default.
- W3027166080 cites W2979787545 @default.
- W3027166080 cites W2979838725 @default.
- W3027166080 cites W2982220924 @default.
- W3027166080 cites W3027349756 @default.
- W3027166080 cites W4250482878 @default.
- W3027166080 cites W845365781 @default.
- W3027166080 doi "https://doi.org/10.1007/978-3-030-46640-4_30" @default.
- W3027166080 hasPublicationYear "2020" @default.
- W3027166080 type Work @default.
- W3027166080 sameAs 3027166080 @default.
- W3027166080 citedByCount "7" @default.
- W3027166080 countsByYear W30271660802021 @default.
- W3027166080 countsByYear W30271660802022 @default.
- W3027166080 countsByYear W30271660802023 @default.
- W3027166080 crossrefType "book-chapter" @default.
- W3027166080 hasAuthorship W3027166080A5019356193 @default.
- W3027166080 hasAuthorship W3027166080A5029722566 @default.
- W3027166080 hasAuthorship W3027166080A5074391946 @default.
- W3027166080 hasAuthorship W3027166080A5089323841 @default.
- W3027166080 hasConcept C101070640 @default.
- W3027166080 hasConcept C105795698 @default.
- W3027166080 hasConcept C126838900 @default.
- W3027166080 hasConcept C136886441 @default.
- W3027166080 hasConcept C142724271 @default.
- W3027166080 hasConcept C143409427 @default.
- W3027166080 hasConcept C144024400 @default.
- W3027166080 hasConcept C151730666 @default.
- W3027166080 hasConcept C153180895 @default.
- W3027166080 hasConcept C154945302 @default.
- W3027166080 hasConcept C167981619 @default.
- W3027166080 hasConcept C19165224 @default.
- W3027166080 hasConcept C19768560 @default.
- W3027166080 hasConcept C22029948 @default.
- W3027166080 hasConcept C2779130545 @default.
- W3027166080 hasConcept C2779343474 @default.
- W3027166080 hasConcept C2944601119 @default.
- W3027166080 hasConcept C33923547 @default.
- W3027166080 hasConcept C41008148 @default.
- W3027166080 hasConcept C71924100 @default.
- W3027166080 hasConcept C81363708 @default.
- W3027166080 hasConcept C86803240 @default.
- W3027166080 hasConcept C89600930 @default.
- W3027166080 hasConceptScore W3027166080C101070640 @default.
- W3027166080 hasConceptScore W3027166080C105795698 @default.
- W3027166080 hasConceptScore W3027166080C126838900 @default.
- W3027166080 hasConceptScore W3027166080C136886441 @default.
- W3027166080 hasConceptScore W3027166080C142724271 @default.
- W3027166080 hasConceptScore W3027166080C143409427 @default.
- W3027166080 hasConceptScore W3027166080C144024400 @default.
- W3027166080 hasConceptScore W3027166080C151730666 @default.
- W3027166080 hasConceptScore W3027166080C153180895 @default.
- W3027166080 hasConceptScore W3027166080C154945302 @default.
- W3027166080 hasConceptScore W3027166080C167981619 @default.
- W3027166080 hasConceptScore W3027166080C19165224 @default.
- W3027166080 hasConceptScore W3027166080C19768560 @default.
- W3027166080 hasConceptScore W3027166080C22029948 @default.
- W3027166080 hasConceptScore W3027166080C2779130545 @default.
- W3027166080 hasConceptScore W3027166080C2779343474 @default.
- W3027166080 hasConceptScore W3027166080C2944601119 @default.
- W3027166080 hasConceptScore W3027166080C33923547 @default.
- W3027166080 hasConceptScore W3027166080C41008148 @default.
- W3027166080 hasConceptScore W3027166080C71924100 @default.
- W3027166080 hasConceptScore W3027166080C81363708 @default.
- W3027166080 hasConceptScore W3027166080C86803240 @default.
- W3027166080 hasConceptScore W3027166080C89600930 @default.
- W3027166080 hasLocation W30271660801 @default.
- W3027166080 hasOpenAccess W3027166080 @default.
- W3027166080 hasPrimaryLocation W30271660801 @default.
- W3027166080 hasRelatedWork W2734349601 @default.
- W3027166080 hasRelatedWork W2899074990 @default.
- W3027166080 hasRelatedWork W2982011997 @default.
- W3027166080 hasRelatedWork W3027166080 @default.
- W3027166080 hasRelatedWork W4281973755 @default.