Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027170554> ?p ?o ?g. }
- W3027170554 endingPage "101879" @default.
- W3027170554 startingPage "101879" @default.
- W3027170554 abstract "Abstract Causal discovery is considered as a major concept in biomedical informatics contributing to diagnosis, therapy, and prognosis of diseases. Probabilistic causality approaches in epidemiology and medicine is a common method for finding relationships between pathogen and disease, environment and disease, and adverse events and drugs. Bayesian Network (BN) is one of the common approaches for probabilistic causality, which is widely used in health-care and biomedical science. Since in many biomedical applications we deal with temporal dataset, the temporal extension of BNs called Dynamic Bayesian network (DBN) is used for such applications. DBNs define probabilistic relationships between parameters in consecutive time points in the form of a graph and have been successfully used in many biomedical applications. In this paper, a novel method was introduced for finding probabilistic causal chains from a temporal dataset with the help of entropy and causal tendency measures. In this method, first, Causal Features Dependency (CFD) matrix is created on the basis of parameters changes in consecutive events of a phenomenon, and then the probabilistic causal graph is constructed from this matrix based on entropy criteria. At the next step, a set of probabilistic causal chains of the corresponding causal graph is constructed by a novel polynomial-time heuristic. Finally, the causal chains are used for predicting the future trend of the phenomenon. The proposed model was applied to the Pooled Resource Open-Access Clinical Trials (PRO-ACT) dataset related to Amyotrophic Lateral Sclerosis (ALS) disease, in order to predict the progression rate of this disease. The results of comparison with Bayesian tree, random forest, support vector regression, linear regression, and multivariate regression show that the proposed algorithm can compete with these methods and in some cases outperforms other algorithms. This study revealed that probabilistic causality is an appropriate approach for predicting the future states of chronic diseases with unknown cause." @default.
- W3027170554 created "2020-05-29" @default.
- W3027170554 creator A5033784677 @default.
- W3027170554 creator A5057087345 @default.
- W3027170554 creator A5064116312 @default.
- W3027170554 date "2020-07-01" @default.
- W3027170554 modified "2023-09-27" @default.
- W3027170554 title "A novel method for predicting the progression rate of ALS disease based on automatic generation of probabilistic causal chains" @default.
- W3027170554 cites W1257817829 @default.
- W3027170554 cites W1919655921 @default.
- W3027170554 cites W1969260982 @default.
- W3027170554 cites W1970695652 @default.
- W3027170554 cites W1973683489 @default.
- W3027170554 cites W1974212138 @default.
- W3027170554 cites W1975379468 @default.
- W3027170554 cites W1976577386 @default.
- W3027170554 cites W1976994512 @default.
- W3027170554 cites W1978286746 @default.
- W3027170554 cites W1986744510 @default.
- W3027170554 cites W1990376219 @default.
- W3027170554 cites W1992334729 @default.
- W3027170554 cites W1995875735 @default.
- W3027170554 cites W1997545358 @default.
- W3027170554 cites W2001432662 @default.
- W3027170554 cites W2008634332 @default.
- W3027170554 cites W2020245429 @default.
- W3027170554 cites W2020279151 @default.
- W3027170554 cites W2029800614 @default.
- W3027170554 cites W2032143817 @default.
- W3027170554 cites W2035707537 @default.
- W3027170554 cites W2055533045 @default.
- W3027170554 cites W2060622181 @default.
- W3027170554 cites W2066828509 @default.
- W3027170554 cites W2067978628 @default.
- W3027170554 cites W2072204165 @default.
- W3027170554 cites W2084391458 @default.
- W3027170554 cites W2088195560 @default.
- W3027170554 cites W2090184738 @default.
- W3027170554 cites W2100920507 @default.
- W3027170554 cites W2118259989 @default.
- W3027170554 cites W2119493390 @default.
- W3027170554 cites W2123211207 @default.
- W3027170554 cites W2124885415 @default.
- W3027170554 cites W2134971580 @default.
- W3027170554 cites W2136988691 @default.
- W3027170554 cites W2142163468 @default.
- W3027170554 cites W2146678343 @default.
- W3027170554 cites W2153012086 @default.
- W3027170554 cites W2156598943 @default.
- W3027170554 cites W2167769381 @default.
- W3027170554 cites W2167852842 @default.
- W3027170554 cites W2178225550 @default.
- W3027170554 cites W2256359513 @default.
- W3027170554 cites W2263806212 @default.
- W3027170554 cites W2305947681 @default.
- W3027170554 cites W2479061539 @default.
- W3027170554 cites W2556818673 @default.
- W3027170554 cites W2587209343 @default.
- W3027170554 cites W2774161943 @default.
- W3027170554 cites W2780333465 @default.
- W3027170554 cites W2794678857 @default.
- W3027170554 cites W2886205810 @default.
- W3027170554 cites W2912390055 @default.
- W3027170554 cites W3146907130 @default.
- W3027170554 cites W4231587123 @default.
- W3027170554 cites W4253588582 @default.
- W3027170554 cites W2896693520 @default.
- W3027170554 doi "https://doi.org/10.1016/j.artmed.2020.101879" @default.
- W3027170554 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32828438" @default.
- W3027170554 hasPublicationYear "2020" @default.
- W3027170554 type Work @default.
- W3027170554 sameAs 3027170554 @default.
- W3027170554 citedByCount "7" @default.
- W3027170554 countsByYear W30271705542021 @default.
- W3027170554 countsByYear W30271705542022 @default.
- W3027170554 countsByYear W30271705542023 @default.
- W3027170554 crossrefType "journal-article" @default.
- W3027170554 hasAuthorship W3027170554A5033784677 @default.
- W3027170554 hasAuthorship W3027170554A5057087345 @default.
- W3027170554 hasAuthorship W3027170554A5064116312 @default.
- W3027170554 hasConcept C119857082 @default.
- W3027170554 hasConcept C124101348 @default.
- W3027170554 hasConcept C154945302 @default.
- W3027170554 hasConcept C41008148 @default.
- W3027170554 hasConcept C49937458 @default.
- W3027170554 hasConceptScore W3027170554C119857082 @default.
- W3027170554 hasConceptScore W3027170554C124101348 @default.
- W3027170554 hasConceptScore W3027170554C154945302 @default.
- W3027170554 hasConceptScore W3027170554C41008148 @default.
- W3027170554 hasConceptScore W3027170554C49937458 @default.
- W3027170554 hasLocation W30271705541 @default.
- W3027170554 hasOpenAccess W3027170554 @default.
- W3027170554 hasPrimaryLocation W30271705541 @default.
- W3027170554 hasRelatedWork W1575659177 @default.
- W3027170554 hasRelatedWork W2961085424 @default.
- W3027170554 hasRelatedWork W3046775127 @default.
- W3027170554 hasRelatedWork W4205958290 @default.
- W3027170554 hasRelatedWork W4285260836 @default.