Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027323683> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3027323683 endingPage "502" @default.
- W3027323683 startingPage "493" @default.
- W3027323683 abstract "Medical data can be mined for effective decision making in the presence of disease analysis. Globally, cardiovascular alias heart disease is one of the highly rated causes of death [1] disease which will lead to 76% of the deaths [2] by the year 2030. Currently, the techniques of machine learning and predictive analytics have proven importance in medical data analysis. In a nutshell, this paper aims to apply six classifiers namely artificial neural network, support vector machine, decision tree, nearest neighbor, linear discriminant analysis, random forest, and to predict the presence of heart diseases in the patient’s datasets. Moreover, the performance of these classifiers on three heart disease datasets is compared. The results reveal that RF, LDA, DT, and ANN have performed better than SVM and KNN in terms of accuracy, recall, F1-score, confusion matrix, and error rate." @default.
- W3027323683 created "2020-05-29" @default.
- W3027323683 creator A5000231181 @default.
- W3027323683 creator A5059313873 @default.
- W3027323683 creator A5083652722 @default.
- W3027323683 date "2020-05-26" @default.
- W3027323683 modified "2023-09-25" @default.
- W3027323683 title "Predictive Analytics for Cardiovascular Disease Diagnosis Using Machine Learning Techniques" @default.
- W3027323683 cites W1850308234 @default.
- W3027323683 cites W2020176002 @default.
- W3027323683 cites W2028558436 @default.
- W3027323683 cites W2047200969 @default.
- W3027323683 cites W2075357005 @default.
- W3027323683 cites W2105628133 @default.
- W3027323683 cites W2108950639 @default.
- W3027323683 cites W2112028307 @default.
- W3027323683 cites W2160327429 @default.
- W3027323683 cites W2169143772 @default.
- W3027323683 cites W2411631905 @default.
- W3027323683 cites W2688034792 @default.
- W3027323683 cites W2738385946 @default.
- W3027323683 cites W4250769649 @default.
- W3027323683 doi "https://doi.org/10.1007/978-981-15-3383-9_45" @default.
- W3027323683 hasPublicationYear "2020" @default.
- W3027323683 type Work @default.
- W3027323683 sameAs 3027323683 @default.
- W3027323683 citedByCount "2" @default.
- W3027323683 countsByYear W30273236832021 @default.
- W3027323683 crossrefType "book-chapter" @default.
- W3027323683 hasAuthorship W3027323683A5000231181 @default.
- W3027323683 hasAuthorship W3027323683A5059313873 @default.
- W3027323683 hasAuthorship W3027323683A5083652722 @default.
- W3027323683 hasConcept C119857082 @default.
- W3027323683 hasConcept C126322002 @default.
- W3027323683 hasConcept C154945302 @default.
- W3027323683 hasConcept C2522767166 @default.
- W3027323683 hasConcept C2779134260 @default.
- W3027323683 hasConcept C41008148 @default.
- W3027323683 hasConcept C71924100 @default.
- W3027323683 hasConcept C79158427 @default.
- W3027323683 hasConcept C83209312 @default.
- W3027323683 hasConceptScore W3027323683C119857082 @default.
- W3027323683 hasConceptScore W3027323683C126322002 @default.
- W3027323683 hasConceptScore W3027323683C154945302 @default.
- W3027323683 hasConceptScore W3027323683C2522767166 @default.
- W3027323683 hasConceptScore W3027323683C2779134260 @default.
- W3027323683 hasConceptScore W3027323683C41008148 @default.
- W3027323683 hasConceptScore W3027323683C71924100 @default.
- W3027323683 hasConceptScore W3027323683C79158427 @default.
- W3027323683 hasConceptScore W3027323683C83209312 @default.
- W3027323683 hasLocation W30273236831 @default.
- W3027323683 hasOpenAccess W3027323683 @default.
- W3027323683 hasPrimaryLocation W30273236831 @default.
- W3027323683 hasRelatedWork W1993137173 @default.
- W3027323683 hasRelatedWork W2564406132 @default.
- W3027323683 hasRelatedWork W2809858895 @default.
- W3027323683 hasRelatedWork W2956296183 @default.
- W3027323683 hasRelatedWork W2984811455 @default.
- W3027323683 hasRelatedWork W2998881927 @default.
- W3027323683 hasRelatedWork W3138622659 @default.
- W3027323683 hasRelatedWork W4205635930 @default.
- W3027323683 hasRelatedWork W643488203 @default.
- W3027323683 hasRelatedWork W3124356676 @default.
- W3027323683 isParatext "false" @default.
- W3027323683 isRetracted "false" @default.
- W3027323683 magId "3027323683" @default.
- W3027323683 workType "book-chapter" @default.