Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027437821> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3027437821 abstract "Professionals utilize sophisticated visual analytics tools (such as Tableau, PowerBI, SAS, R, or Python) to collaboratively make sense of data and for evidence-based decision making. For many contexts, however, the quantitative insights made visual in the data need to be combined with qualitative insights based on experience and know-how. Only by taking into account previous experiences, context awareness, and relevant expertise, can the data visualized in business intelligence tools be used adequately.Examples of such data-knowledge combinations include the following constellations: •Risk managers need to add their understanding of market cycles and customer profiles to the risk metrics provided by their risk analysts. •Marketing professionals need to interpret customer data in light of previous experiences and future growth plans. •Strategists need to examine the provided KPIs and dashboards by reflecting on their industry context and the nature of the strategic decisions to be taken. The question thus arises how to best combine big data with big knowledge (in the sense of experience and expertise)? In a three year national science foundation project, we have explored this question, working with real-life organizations (such as a central bank, a travel industry company, or a defense contractor), and we have summarized our findings in a set of design principles. These simple rules instruct programmers, designers, analysts, and managers in how to complement their visual analytics tools with compelling ways of representing relevant expertise graphically. In the paper we describe the scope of our project and the design principles. We provide visual examples that bring the principles to life, and we mention their limitations. We present a human-centered design approach that expands current visual analytics by incorporating knowledge visualization. As a method we have used a design science approach, using the theory of collaborative dimensions by Green et al. and the concept of boundary objects to develop and test prototypes. The results besides the prototypes are design principles that anyone working in the analytics field can use." @default.
- W3027437821 created "2020-05-29" @default.
- W3027437821 creator A5037020023 @default.
- W3027437821 date "2019-08-23" @default.
- W3027437821 modified "2023-09-27" @default.
- W3027437821 title "Big Data meets Big Knowledge: Design Principles for the Combination of Visual Analytics and Knowledge Visualization in Collaborative Business Contexts." @default.
- W3027437821 hasPublicationYear "2019" @default.
- W3027437821 type Work @default.
- W3027437821 sameAs 3027437821 @default.
- W3027437821 citedByCount "0" @default.
- W3027437821 crossrefType "journal-article" @default.
- W3027437821 hasAuthorship W3027437821A5037020023 @default.
- W3027437821 hasConcept C111919701 @default.
- W3027437821 hasConcept C136764020 @default.
- W3027437821 hasConcept C144133560 @default.
- W3027437821 hasConcept C148792806 @default.
- W3027437821 hasConcept C154945302 @default.
- W3027437821 hasConcept C162853370 @default.
- W3027437821 hasConcept C167379230 @default.
- W3027437821 hasConcept C189076506 @default.
- W3027437821 hasConcept C2129575 @default.
- W3027437821 hasConcept C2522767166 @default.
- W3027437821 hasConcept C2767350 @default.
- W3027437821 hasConcept C36464697 @default.
- W3027437821 hasConcept C37952496 @default.
- W3027437821 hasConcept C41008148 @default.
- W3027437821 hasConcept C4216890 @default.
- W3027437821 hasConcept C545860419 @default.
- W3027437821 hasConcept C56739046 @default.
- W3027437821 hasConcept C59732488 @default.
- W3027437821 hasConcept C75684735 @default.
- W3027437821 hasConcept C79158427 @default.
- W3027437821 hasConceptScore W3027437821C111919701 @default.
- W3027437821 hasConceptScore W3027437821C136764020 @default.
- W3027437821 hasConceptScore W3027437821C144133560 @default.
- W3027437821 hasConceptScore W3027437821C148792806 @default.
- W3027437821 hasConceptScore W3027437821C154945302 @default.
- W3027437821 hasConceptScore W3027437821C162853370 @default.
- W3027437821 hasConceptScore W3027437821C167379230 @default.
- W3027437821 hasConceptScore W3027437821C189076506 @default.
- W3027437821 hasConceptScore W3027437821C2129575 @default.
- W3027437821 hasConceptScore W3027437821C2522767166 @default.
- W3027437821 hasConceptScore W3027437821C2767350 @default.
- W3027437821 hasConceptScore W3027437821C36464697 @default.
- W3027437821 hasConceptScore W3027437821C37952496 @default.
- W3027437821 hasConceptScore W3027437821C41008148 @default.
- W3027437821 hasConceptScore W3027437821C4216890 @default.
- W3027437821 hasConceptScore W3027437821C545860419 @default.
- W3027437821 hasConceptScore W3027437821C56739046 @default.
- W3027437821 hasConceptScore W3027437821C59732488 @default.
- W3027437821 hasConceptScore W3027437821C75684735 @default.
- W3027437821 hasConceptScore W3027437821C79158427 @default.
- W3027437821 hasLocation W30274378211 @default.
- W3027437821 hasOpenAccess W3027437821 @default.
- W3027437821 hasPrimaryLocation W30274378211 @default.
- W3027437821 hasRelatedWork W155851281 @default.
- W3027437821 hasRelatedWork W176426749 @default.
- W3027437821 hasRelatedWork W2083735989 @default.
- W3027437821 hasRelatedWork W2130640247 @default.
- W3027437821 hasRelatedWork W2193442389 @default.
- W3027437821 hasRelatedWork W2372906258 @default.
- W3027437821 hasRelatedWork W2414200936 @default.
- W3027437821 hasRelatedWork W2522175701 @default.
- W3027437821 hasRelatedWork W2748917967 @default.
- W3027437821 hasRelatedWork W2760895203 @default.
- W3027437821 hasRelatedWork W2778353693 @default.
- W3027437821 hasRelatedWork W2782263356 @default.
- W3027437821 hasRelatedWork W2799655289 @default.
- W3027437821 hasRelatedWork W2904019224 @default.
- W3027437821 hasRelatedWork W2965794078 @default.
- W3027437821 hasRelatedWork W2972623211 @default.
- W3027437821 hasRelatedWork W3029111281 @default.
- W3027437821 hasRelatedWork W3105662788 @default.
- W3027437821 hasRelatedWork W3190901245 @default.
- W3027437821 hasRelatedWork W653151999 @default.
- W3027437821 isParatext "false" @default.
- W3027437821 isRetracted "false" @default.
- W3027437821 magId "3027437821" @default.
- W3027437821 workType "article" @default.