Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027454267> ?p ?o ?g. }
- W3027454267 endingPage "1205" @default.
- W3027454267 startingPage "1196" @default.
- W3027454267 abstract "Chemical reactions at the mineral-solution interface control important interfacial processes, such as geochemical element cycling, nutrient recovery from eutrophicated waters, sequestration of toxic contaminants, and geological carbon storage by mineral carbonation. By time-resolved in situ imaging of nanoscale mineral interfacial reactions, it is possible to clarify the mechanisms governing mineral-fluid reactions.In this Account, we present a concise summary of this topic that addresses a current challenge at the frontier of understanding mineral interfaces and their importance to a wide range of mineral re-equilibration processes in the presence of a fluid aqueous phase. We have used real-time nanoscale imaging of liquid-cell atomic force microscopy (AFM) to observe the in situ coupling of the dissolution-precipitation process, whereby the dissolution of a parent mineral phase is coupled at mineral interfaces with the precipitation of another product phase, chemically different from the parent. These nanoscale observations allow for the identification of dissolution and growth rates through systematically investigating various minerals, including calcite (CaCO3), siderite (FeCO3), cerussite (PbCO3), magnesite (MgCO3), dolomite (CaMg(CO3)2), brushite (CaHPO4·2H2O), brucite (Mg(OH)2), portlandite (Ca(OH)2), and goethite (α-FeOOH), in various reacting aqueous fluids containing solution species, such as arsenic, phosphate, organo- or pyrophosphate, CO2, selenium, lead, cadmium, iron, chromium, and antimony. We detected the in situ replacement of these parent mineral phases by product phases, identified through a variety of analytical methods such as Raman spectroscopy, high-resolution transmission electron microscopy, and various X-ray techniques, as well as modeling by geochemical simulation using PHREEQC. As a consequence of the coupled processes, sequestration of toxic elements and hazardous species and inorganic and organic carbon, and limiting or promoting recovery of nutrients can be achieved at nano- and macroscopic scales.We also used in situ AFM to quantitatively measure the retreat rates of molecular steps and directly observe the morphology changes of dissolution etch pits on calcium phosphates in organic acid solutions present in most rhizosphere environments. By molecular modeling using density functional theory (DFT), we explain the origin of dissolution etch pit evolution through specific stereochemistry and molecular recognition and provide an energetic basis by calculating the binding energies of chemical functionalities on organic acids to direction-specific steps on mineral surfaces. In addition, we further quantified precipitation kinetics of calcium phosphates (Ca-P's) on typical mineral surfaces at the nanoscale in environmentally relevant solutions with various organic molecules, by measurements obtained from sequential images obtained by liquid-cell AFM. In situ dynamic force spectroscopy (DFS) was used to determine binding energies of single-molecules with different chemical functionalities found in natural organic matter at mineral-fluid interfaces. Quantifying molecular organo-mineral bonding or binding energies mechanistically explains phosphate precipitation and transformation. From DFS measurements, molecular-scale interactions of mineral-natural organic matter (DNA, proteins, and polysaccharides) associations were determined. With this powerful tool, single-molecule determinations of polysaccharide-amorphous iron oxide or hematite interactions provided the mechanistic origin of the phase- or facet-dependent adsorption. These systematic investigations and findings significantly contribute to a more quantitative prediction of the fate of nutrients and contaminants, chemical element cycling, and potential geological carbon capture and nuclear waste storage in aqueous environments." @default.
- W3027454267 created "2020-05-29" @default.
- W3027454267 creator A5011423021 @default.
- W3027454267 creator A5071982975 @default.
- W3027454267 date "2020-05-22" @default.
- W3027454267 modified "2023-10-17" @default.
- W3027454267 title "Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy" @default.
- W3027454267 cites W1979900636 @default.
- W3027454267 cites W1983956412 @default.
- W3027454267 cites W1991821427 @default.
- W3027454267 cites W1999378085 @default.
- W3027454267 cites W2013496911 @default.
- W3027454267 cites W2019738822 @default.
- W3027454267 cites W2027142269 @default.
- W3027454267 cites W2039063348 @default.
- W3027454267 cites W2043844720 @default.
- W3027454267 cites W2048109216 @default.
- W3027454267 cites W2049834714 @default.
- W3027454267 cites W2052090210 @default.
- W3027454267 cites W2054790370 @default.
- W3027454267 cites W2056414830 @default.
- W3027454267 cites W2063938250 @default.
- W3027454267 cites W2069370854 @default.
- W3027454267 cites W2070375734 @default.
- W3027454267 cites W2077225726 @default.
- W3027454267 cites W2077745300 @default.
- W3027454267 cites W2079032830 @default.
- W3027454267 cites W2081428192 @default.
- W3027454267 cites W2081944400 @default.
- W3027454267 cites W2082221014 @default.
- W3027454267 cites W2098962952 @default.
- W3027454267 cites W2100194516 @default.
- W3027454267 cites W2111622012 @default.
- W3027454267 cites W2132484323 @default.
- W3027454267 cites W2194601468 @default.
- W3027454267 cites W2200817828 @default.
- W3027454267 cites W2317553945 @default.
- W3027454267 cites W2473451920 @default.
- W3027454267 cites W2538162950 @default.
- W3027454267 cites W2552839377 @default.
- W3027454267 cites W2557597598 @default.
- W3027454267 cites W2560381246 @default.
- W3027454267 cites W2599659769 @default.
- W3027454267 cites W2618526784 @default.
- W3027454267 cites W2750437866 @default.
- W3027454267 cites W2774978077 @default.
- W3027454267 cites W2792419428 @default.
- W3027454267 cites W2793041509 @default.
- W3027454267 cites W2794488702 @default.
- W3027454267 cites W2803027619 @default.
- W3027454267 cites W2888351635 @default.
- W3027454267 cites W2903304104 @default.
- W3027454267 cites W2949069142 @default.
- W3027454267 cites W2952081370 @default.
- W3027454267 cites W2971374220 @default.
- W3027454267 cites W2995946743 @default.
- W3027454267 cites W3005026500 @default.
- W3027454267 doi "https://doi.org/10.1021/acs.accounts.0c00128" @default.
- W3027454267 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32441501" @default.
- W3027454267 hasPublicationYear "2020" @default.
- W3027454267 type Work @default.
- W3027454267 sameAs 3027454267 @default.
- W3027454267 citedByCount "28" @default.
- W3027454267 countsByYear W30274542672021 @default.
- W3027454267 countsByYear W30274542672022 @default.
- W3027454267 countsByYear W30274542672023 @default.
- W3027454267 crossrefType "journal-article" @default.
- W3027454267 hasAuthorship W3027454267A5011423021 @default.
- W3027454267 hasAuthorship W3027454267A5071982975 @default.
- W3027454267 hasConcept C127413603 @default.
- W3027454267 hasConcept C147789679 @default.
- W3027454267 hasConcept C150394285 @default.
- W3027454267 hasConcept C178790620 @default.
- W3027454267 hasConcept C185592680 @default.
- W3027454267 hasConcept C199289684 @default.
- W3027454267 hasConcept C2776432453 @default.
- W3027454267 hasConcept C2777132085 @default.
- W3027454267 hasConcept C2777216531 @default.
- W3027454267 hasConcept C2777787761 @default.
- W3027454267 hasConcept C2779117930 @default.
- W3027454267 hasConcept C2780181037 @default.
- W3027454267 hasConcept C2780191791 @default.
- W3027454267 hasConcept C2780804967 @default.
- W3027454267 hasConcept C42360764 @default.
- W3027454267 hasConcept C543218039 @default.
- W3027454267 hasConcept C549924466 @default.
- W3027454267 hasConcept C88380143 @default.
- W3027454267 hasConceptScore W3027454267C127413603 @default.
- W3027454267 hasConceptScore W3027454267C147789679 @default.
- W3027454267 hasConceptScore W3027454267C150394285 @default.
- W3027454267 hasConceptScore W3027454267C178790620 @default.
- W3027454267 hasConceptScore W3027454267C185592680 @default.
- W3027454267 hasConceptScore W3027454267C199289684 @default.
- W3027454267 hasConceptScore W3027454267C2776432453 @default.
- W3027454267 hasConceptScore W3027454267C2777132085 @default.
- W3027454267 hasConceptScore W3027454267C2777216531 @default.
- W3027454267 hasConceptScore W3027454267C2777787761 @default.
- W3027454267 hasConceptScore W3027454267C2779117930 @default.