Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027489975> ?p ?o ?g. }
- W3027489975 endingPage "1188" @default.
- W3027489975 startingPage "1178" @default.
- W3027489975 abstract "Abstract Our understanding of ecological processes is built on patterns inferred from data. Applying modern analytical tools such as machine learning to increasingly high dimensional data offers the potential to expand our perspectives on these processes, shedding new light on complex ecological phenomena such as pathogen transmission in wild populations. Here, we propose a novel approach that combines data mining with theoretical models of disease dynamics. Using rodents as an example, we incorporate statistical differences in the life history features of zoonotic reservoir hosts into pathogen transmission models, enabling us to bound the range of dynamical phenomena associated with hosts, based on their traits. We then test for associations between equilibrium prevalence, a key epidemiological metric and data on human outbreaks of rodent‐borne zoonoses, identifying matches between empirical evidence and theoretical predictions of transmission dynamics. We show how this framework can be generalized to other systems through a rubric of disease models and parameters that can be derived from empirical data. By linking life history components directly to their effects on disease dynamics, our mining‐modelling approach integrates machine learning and theoretical models to explore mechanisms in the macroecology of pathogen transmission and their consequences for spillover infection to humans." @default.
- W3027489975 created "2020-05-29" @default.
- W3027489975 creator A5000038199 @default.
- W3027489975 creator A5018436782 @default.
- W3027489975 creator A5071740877 @default.
- W3027489975 creator A5074579933 @default.
- W3027489975 date "2020-05-22" @default.
- W3027489975 modified "2023-09-25" @default.
- W3027489975 title "Integrating data mining and transmission theory in the ecology of infectious diseases" @default.
- W3027489975 cites W1641982102 @default.
- W3027489975 cites W1787861744 @default.
- W3027489975 cites W1817363915 @default.
- W3027489975 cites W1925702649 @default.
- W3027489975 cites W1969123524 @default.
- W3027489975 cites W1978237410 @default.
- W3027489975 cites W1980897242 @default.
- W3027489975 cites W1982129622 @default.
- W3027489975 cites W1987851547 @default.
- W3027489975 cites W1993442130 @default.
- W3027489975 cites W2011546933 @default.
- W3027489975 cites W2032548893 @default.
- W3027489975 cites W2033085459 @default.
- W3027489975 cites W2055378605 @default.
- W3027489975 cites W2059655508 @default.
- W3027489975 cites W2062363688 @default.
- W3027489975 cites W2062955606 @default.
- W3027489975 cites W2064186732 @default.
- W3027489975 cites W2074074707 @default.
- W3027489975 cites W2078909230 @default.
- W3027489975 cites W2082422127 @default.
- W3027489975 cites W2083154393 @default.
- W3027489975 cites W2084341220 @default.
- W3027489975 cites W2086079289 @default.
- W3027489975 cites W2093830674 @default.
- W3027489975 cites W2100955128 @default.
- W3027489975 cites W2108567012 @default.
- W3027489975 cites W2109320505 @default.
- W3027489975 cites W2111144420 @default.
- W3027489975 cites W2115211402 @default.
- W3027489975 cites W2120196564 @default.
- W3027489975 cites W2130133091 @default.
- W3027489975 cites W2132071279 @default.
- W3027489975 cites W2134416450 @default.
- W3027489975 cites W2134425829 @default.
- W3027489975 cites W2141419835 @default.
- W3027489975 cites W2146713153 @default.
- W3027489975 cites W2149667190 @default.
- W3027489975 cites W2150022669 @default.
- W3027489975 cites W2151399155 @default.
- W3027489975 cites W2152348611 @default.
- W3027489975 cites W2155151751 @default.
- W3027489975 cites W2156689933 @default.
- W3027489975 cites W2167030304 @default.
- W3027489975 cites W2170117929 @default.
- W3027489975 cites W2180676250 @default.
- W3027489975 cites W2207454251 @default.
- W3027489975 cites W2409366855 @default.
- W3027489975 cites W2444422412 @default.
- W3027489975 cites W2472069494 @default.
- W3027489975 cites W2507515754 @default.
- W3027489975 cites W2550387562 @default.
- W3027489975 cites W2609942500 @default.
- W3027489975 cites W2618653913 @default.
- W3027489975 cites W2783721340 @default.
- W3027489975 cites W2785417031 @default.
- W3027489975 cites W2790799671 @default.
- W3027489975 cites W2795535245 @default.
- W3027489975 cites W2809620975 @default.
- W3027489975 cites W2811141169 @default.
- W3027489975 cites W2893482119 @default.
- W3027489975 cites W2900185100 @default.
- W3027489975 cites W2916004120 @default.
- W3027489975 cites W2922945367 @default.
- W3027489975 cites W2923666109 @default.
- W3027489975 cites W2926395747 @default.
- W3027489975 cites W2938509594 @default.
- W3027489975 cites W2951754354 @default.
- W3027489975 cites W2952432726 @default.
- W3027489975 cites W2953439396 @default.
- W3027489975 cites W2955779796 @default.
- W3027489975 cites W2971416583 @default.
- W3027489975 cites W4247460913 @default.
- W3027489975 cites W4292948660 @default.
- W3027489975 doi "https://doi.org/10.1111/ele.13520" @default.
- W3027489975 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7384120" @default.
- W3027489975 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32441459" @default.
- W3027489975 hasPublicationYear "2020" @default.
- W3027489975 type Work @default.
- W3027489975 sameAs 3027489975 @default.
- W3027489975 citedByCount "26" @default.
- W3027489975 countsByYear W30274899752020 @default.
- W3027489975 countsByYear W30274899752021 @default.
- W3027489975 countsByYear W30274899752022 @default.
- W3027489975 countsByYear W30274899752023 @default.
- W3027489975 crossrefType "journal-article" @default.
- W3027489975 hasAuthorship W3027489975A5000038199 @default.
- W3027489975 hasAuthorship W3027489975A5018436782 @default.
- W3027489975 hasAuthorship W3027489975A5071740877 @default.