Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027655551> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3027655551 abstract "Robotic shepherding problem considers the control and navigation of a group of coherent agents (e.g., a flock of bird or a fleet of drones) through the motion of an external robot, called shepherd. Machine learning based methods have successfully solved this problem in an empty environment with no obstacles. Rule-based methods, on the other hand, can handle more complex scenarios in which environments are cluttered with obstacles and allow multiple shepherds to work collaboratively. However, these rule-based methods are fragile due to the difficulty in defining a comprehensive set of rules that can handle all possible cases. To overcome these limitations, we propose the first known learning-based method that can herd agents amongst obstacles. By using deep reinforcement learning techniques combined with the probabilistic roadmaps, we train a shepherding model using noisy but controlled environmental and behavioral parameters. Our experimental results show that the proposed method is robust, namely, it is insensitive to the uncertainties originated from both environmental and behavioral models. Consequently, the proposed method has a higher success rate, shorter completion time and path length than the rule-based behavioral methods have. These advantages are particularly prominent in more challenging scenarios involving more difficult groups and strenuous passages." @default.
- W3027655551 created "2020-05-29" @default.
- W3027655551 creator A5019967864 @default.
- W3027655551 creator A5027873519 @default.
- W3027655551 date "2020-05-19" @default.
- W3027655551 modified "2023-10-18" @default.
- W3027655551 title "Learning to Herd Agents Amongst Obstacles: Training Robust Shepherding Behaviors using Deep Reinforcement Learning" @default.
- W3027655551 cites W1515655759 @default.
- W3027655551 cites W2114494496 @default.
- W3027655551 cites W2123950347 @default.
- W3027655551 cites W2128990851 @default.
- W3027655551 cites W2145339207 @default.
- W3027655551 cites W2150256377 @default.
- W3027655551 cites W2150312211 @default.
- W3027655551 cites W2155540178 @default.
- W3027655551 cites W2155968351 @default.
- W3027655551 cites W2170591991 @default.
- W3027655551 cites W2171126290 @default.
- W3027655551 cites W2295904058 @default.
- W3027655551 cites W2300722861 @default.
- W3027655551 cites W2325435747 @default.
- W3027655551 cites W2406612398 @default.
- W3027655551 cites W2587233709 @default.
- W3027655551 cites W2769558701 @default.
- W3027655551 cites W2845027230 @default.
- W3027655551 cites W2963477884 @default.
- W3027655551 cites W2964121744 @default.
- W3027655551 cites W2966884640 @default.
- W3027655551 cites W2978362873 @default.
- W3027655551 cites W2997791494 @default.
- W3027655551 doi "https://doi.org/10.48550/arxiv.2005.09476" @default.
- W3027655551 hasPublicationYear "2020" @default.
- W3027655551 type Work @default.
- W3027655551 sameAs 3027655551 @default.
- W3027655551 citedByCount "0" @default.
- W3027655551 crossrefType "posted-content" @default.
- W3027655551 hasAuthorship W3027655551A5019967864 @default.
- W3027655551 hasAuthorship W3027655551A5027873519 @default.
- W3027655551 hasBestOaLocation W30276555511 @default.
- W3027655551 hasConcept C108583219 @default.
- W3027655551 hasConcept C119857082 @default.
- W3027655551 hasConcept C154945302 @default.
- W3027655551 hasConcept C177264268 @default.
- W3027655551 hasConcept C199360897 @default.
- W3027655551 hasConcept C2777735758 @default.
- W3027655551 hasConcept C41008148 @default.
- W3027655551 hasConcept C49937458 @default.
- W3027655551 hasConcept C54355233 @default.
- W3027655551 hasConcept C59519942 @default.
- W3027655551 hasConcept C86803240 @default.
- W3027655551 hasConcept C97541855 @default.
- W3027655551 hasConceptScore W3027655551C108583219 @default.
- W3027655551 hasConceptScore W3027655551C119857082 @default.
- W3027655551 hasConceptScore W3027655551C154945302 @default.
- W3027655551 hasConceptScore W3027655551C177264268 @default.
- W3027655551 hasConceptScore W3027655551C199360897 @default.
- W3027655551 hasConceptScore W3027655551C2777735758 @default.
- W3027655551 hasConceptScore W3027655551C41008148 @default.
- W3027655551 hasConceptScore W3027655551C49937458 @default.
- W3027655551 hasConceptScore W3027655551C54355233 @default.
- W3027655551 hasConceptScore W3027655551C59519942 @default.
- W3027655551 hasConceptScore W3027655551C86803240 @default.
- W3027655551 hasConceptScore W3027655551C97541855 @default.
- W3027655551 hasLocation W30276555511 @default.
- W3027655551 hasOpenAccess W3027655551 @default.
- W3027655551 hasPrimaryLocation W30276555511 @default.
- W3027655551 hasRelatedWork W2922457425 @default.
- W3027655551 hasRelatedWork W3014300295 @default.
- W3027655551 hasRelatedWork W3044383684 @default.
- W3027655551 hasRelatedWork W3079760979 @default.
- W3027655551 hasRelatedWork W3164822677 @default.
- W3027655551 hasRelatedWork W3215138031 @default.
- W3027655551 hasRelatedWork W4220882927 @default.
- W3027655551 hasRelatedWork W4223943233 @default.
- W3027655551 hasRelatedWork W4250304930 @default.
- W3027655551 hasRelatedWork W4299487748 @default.
- W3027655551 isParatext "false" @default.
- W3027655551 isRetracted "false" @default.
- W3027655551 magId "3027655551" @default.
- W3027655551 workType "article" @default.