Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027661921> ?p ?o ?g. }
- W3027661921 endingPage "92" @default.
- W3027661921 startingPage "80" @default.
- W3027661921 abstract "Determining a process–structure–property relationship is the holy grail of materials science, where both computational prediction in the forward direction and materials design in the inverse direction are essential. Problems in materials design are often considered in the context of process–property linkage by bypassing the materials structure, or in the context of structure–property linkage as in microstructure-sensitive design problems. However, there is a lack of research effort in studying materials design problems in the context of process–structure linkage, which has a great implication in reverse engineering. In this work, given a target microstructure, we propose an active learning high-throughput microstructure calibration framework to derive a set of processing parameters, which can produce an optimal microstructure that is statistically equivalent to the target microstructure. The proposed framework is formulated as a noisy multi-objective optimization problem, where each objective function measures a deterministic or statistical difference of the same microstructure descriptor between a candidate microstructure and a target microstructure. Furthermore, to significantly reduce the physical waiting wall-time, we enable the high-throughput feature of the microstructure calibration framework by adopting an asynchronously parallel Bayesian optimization to exploit high-performance computing resources. Case studies in additive manufacturing and grain growth are used to demonstrate the applicability of the proposed framework, where kinetic Monte Carlo (kMC) simulation is used as a forward predictive model, such that for a given target microstructure, the target processing parameters that produced this microstructure are successfully recovered." @default.
- W3027661921 created "2020-05-29" @default.
- W3027661921 creator A5020404655 @default.
- W3027661921 creator A5030871940 @default.
- W3027661921 creator A5031951344 @default.
- W3027661921 creator A5064659779 @default.
- W3027661921 date "2020-08-01" @default.
- W3027661921 modified "2023-10-15" @default.
- W3027661921 title "An active learning high-throughput microstructure calibration framework for solving inverse structure–process problems in materials informatics" @default.
- W3027661921 cites W1510052597 @default.
- W3027661921 cites W1965511886 @default.
- W3027661921 cites W1970039946 @default.
- W3027661921 cites W1985760524 @default.
- W3027661921 cites W2001098958 @default.
- W3027661921 cites W2002246095 @default.
- W3027661921 cites W2023570682 @default.
- W3027661921 cites W2030912032 @default.
- W3027661921 cites W2040622444 @default.
- W3027661921 cites W2041074580 @default.
- W3027661921 cites W2041663363 @default.
- W3027661921 cites W2045050140 @default.
- W3027661921 cites W2051310174 @default.
- W3027661921 cites W2073918092 @default.
- W3027661921 cites W2087115437 @default.
- W3027661921 cites W2087956818 @default.
- W3027661921 cites W2108430764 @default.
- W3027661921 cites W2157473429 @default.
- W3027661921 cites W2163286960 @default.
- W3027661921 cites W2192203593 @default.
- W3027661921 cites W2301060195 @default.
- W3027661921 cites W2372859909 @default.
- W3027661921 cites W2413882950 @default.
- W3027661921 cites W2419675785 @default.
- W3027661921 cites W2490555771 @default.
- W3027661921 cites W2545577671 @default.
- W3027661921 cites W2552227324 @default.
- W3027661921 cites W2555395598 @default.
- W3027661921 cites W2595834889 @default.
- W3027661921 cites W2599820605 @default.
- W3027661921 cites W2606292481 @default.
- W3027661921 cites W2606759614 @default.
- W3027661921 cites W2727066077 @default.
- W3027661921 cites W2737401725 @default.
- W3027661921 cites W2739485916 @default.
- W3027661921 cites W2743613172 @default.
- W3027661921 cites W2773073112 @default.
- W3027661921 cites W2786013445 @default.
- W3027661921 cites W2789526630 @default.
- W3027661921 cites W2793598076 @default.
- W3027661921 cites W2801563793 @default.
- W3027661921 cites W2802951432 @default.
- W3027661921 cites W2810507969 @default.
- W3027661921 cites W2891985807 @default.
- W3027661921 cites W2907461504 @default.
- W3027661921 cites W2907466830 @default.
- W3027661921 cites W2912397543 @default.
- W3027661921 cites W2912469459 @default.
- W3027661921 cites W2926616755 @default.
- W3027661921 cites W2937135078 @default.
- W3027661921 cites W2943314050 @default.
- W3027661921 cites W2947800066 @default.
- W3027661921 cites W2948916517 @default.
- W3027661921 cites W2963173533 @default.
- W3027661921 cites W2967280824 @default.
- W3027661921 cites W2972982458 @default.
- W3027661921 cites W2995997144 @default.
- W3027661921 cites W3011065368 @default.
- W3027661921 cites W3103297471 @default.
- W3027661921 cites W4292671739 @default.
- W3027661921 doi "https://doi.org/10.1016/j.actamat.2020.04.054" @default.
- W3027661921 hasPublicationYear "2020" @default.
- W3027661921 type Work @default.
- W3027661921 sameAs 3027661921 @default.
- W3027661921 citedByCount "24" @default.
- W3027661921 countsByYear W30276619212020 @default.
- W3027661921 countsByYear W30276619212021 @default.
- W3027661921 countsByYear W30276619212022 @default.
- W3027661921 countsByYear W30276619212023 @default.
- W3027661921 crossrefType "journal-article" @default.
- W3027661921 hasAuthorship W3027661921A5020404655 @default.
- W3027661921 hasAuthorship W3027661921A5030871940 @default.
- W3027661921 hasAuthorship W3027661921A5031951344 @default.
- W3027661921 hasAuthorship W3027661921A5064659779 @default.
- W3027661921 hasBestOaLocation W30276619211 @default.
- W3027661921 hasConcept C104317684 @default.
- W3027661921 hasConcept C111919701 @default.
- W3027661921 hasConcept C138816342 @default.
- W3027661921 hasConcept C145642194 @default.
- W3027661921 hasConcept C151730666 @default.
- W3027661921 hasConcept C154945302 @default.
- W3027661921 hasConcept C158518442 @default.
- W3027661921 hasConcept C159110408 @default.
- W3027661921 hasConcept C185592680 @default.
- W3027661921 hasConcept C191897082 @default.
- W3027661921 hasConcept C192562407 @default.
- W3027661921 hasConcept C2778049539 @default.
- W3027661921 hasConcept C2779343474 @default.
- W3027661921 hasConcept C31266012 @default.