Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027711596> ?p ?o ?g. }
- W3027711596 endingPage "102946" @default.
- W3027711596 startingPage "102935" @default.
- W3027711596 abstract "Hyperspectral data have been widely used in various fields due to its rich spectral and spatial information in recent years. Yet, hyperspectral images are always tainted by a variety of mixed noises. These noises seriously limit the accuracy of subsequent applications. To remove noise, this paper, based on low-rank tensor decomposition, combined with non-local self-similar prior information, proposes a tensor-based non-local low-rank denoising model, where non-local self-similarity uses mainly spatial correlation while low-rank tensor decomposition method uses mainly spectral correlation between bands. Traditional tensor-based methods are commonly NP-hard to compute and are sensitive to sparse noise. However, the method proposed in this paper can separate efficiently the low-rank clean image from Gaussian noise and sparse noise (pulses, deadlines, stripes, speckle, etc.) by using a new tensor singular value decomposition (T-SVD) and tensor nuclear norm (TNN). The NP-hard task was also achieved well by the alternating direction multiplier method. Due to the full use of spectral and spatial information of the data, Gaussian noise and sparse noise can be effectively removed. The effectiveness of our algorithm was verified through experiments using simulated and real data." @default.
- W3027711596 created "2020-05-29" @default.
- W3027711596 creator A5007016189 @default.
- W3027711596 creator A5008662056 @default.
- W3027711596 creator A5059066504 @default.
- W3027711596 creator A5061088277 @default.
- W3027711596 creator A5075243298 @default.
- W3027711596 creator A5083510126 @default.
- W3027711596 date "2020-01-01" @default.
- W3027711596 modified "2023-09-23" @default.
- W3027711596 title "Tensor-Based Low-Rank and Sparse Prior Information Constraints for Hyperspectral Image Denoising" @default.
- W3027711596 cites W1944540851 @default.
- W3027711596 cites W1963826206 @default.
- W3027711596 cites W1974438823 @default.
- W3027711596 cites W1978749115 @default.
- W3027711596 cites W1985242206 @default.
- W3027711596 cites W1994040806 @default.
- W3027711596 cites W2016670111 @default.
- W3027711596 cites W2024165284 @default.
- W3027711596 cites W2030927653 @default.
- W3027711596 cites W2039596145 @default.
- W3027711596 cites W2043571470 @default.
- W3027711596 cites W2045983409 @default.
- W3027711596 cites W2047071281 @default.
- W3027711596 cites W2048695508 @default.
- W3027711596 cites W2049418899 @default.
- W3027711596 cites W2056370875 @default.
- W3027711596 cites W2080843093 @default.
- W3027711596 cites W2082600204 @default.
- W3027711596 cites W2095906131 @default.
- W3027711596 cites W2097073572 @default.
- W3027711596 cites W2107861471 @default.
- W3027711596 cites W2140702875 @default.
- W3027711596 cites W2141983208 @default.
- W3027711596 cites W2145962650 @default.
- W3027711596 cites W2160547390 @default.
- W3027711596 cites W2163886442 @default.
- W3027711596 cites W2171520281 @default.
- W3027711596 cites W2207282238 @default.
- W3027711596 cites W2280622051 @default.
- W3027711596 cites W2401672073 @default.
- W3027711596 cites W2414009677 @default.
- W3027711596 cites W2464748116 @default.
- W3027711596 cites W2536599074 @default.
- W3027711596 cites W2617737158 @default.
- W3027711596 cites W2735711969 @default.
- W3027711596 cites W2790528326 @default.
- W3027711596 cites W2790888198 @default.
- W3027711596 cites W2805465265 @default.
- W3027711596 cites W2809801483 @default.
- W3027711596 cites W2908833896 @default.
- W3027711596 cites W2942004611 @default.
- W3027711596 cites W2963328634 @default.
- W3027711596 cites W2964214749 @default.
- W3027711596 cites W3009680904 @default.
- W3027711596 doi "https://doi.org/10.1109/access.2020.2996303" @default.
- W3027711596 hasPublicationYear "2020" @default.
- W3027711596 type Work @default.
- W3027711596 sameAs 3027711596 @default.
- W3027711596 citedByCount "4" @default.
- W3027711596 countsByYear W30277115962021 @default.
- W3027711596 countsByYear W30277115962022 @default.
- W3027711596 countsByYear W30277115962023 @default.
- W3027711596 crossrefType "journal-article" @default.
- W3027711596 hasAuthorship W3027711596A5007016189 @default.
- W3027711596 hasAuthorship W3027711596A5008662056 @default.
- W3027711596 hasAuthorship W3027711596A5059066504 @default.
- W3027711596 hasAuthorship W3027711596A5061088277 @default.
- W3027711596 hasAuthorship W3027711596A5075243298 @default.
- W3027711596 hasAuthorship W3027711596A5083510126 @default.
- W3027711596 hasBestOaLocation W30277115961 @default.
- W3027711596 hasConcept C105795698 @default.
- W3027711596 hasConcept C113315163 @default.
- W3027711596 hasConcept C11413529 @default.
- W3027711596 hasConcept C114614502 @default.
- W3027711596 hasConcept C115961682 @default.
- W3027711596 hasConcept C121332964 @default.
- W3027711596 hasConcept C153180895 @default.
- W3027711596 hasConcept C154945302 @default.
- W3027711596 hasConcept C155281189 @default.
- W3027711596 hasConcept C158693339 @default.
- W3027711596 hasConcept C159078339 @default.
- W3027711596 hasConcept C159620131 @default.
- W3027711596 hasConcept C163294075 @default.
- W3027711596 hasConcept C164226766 @default.
- W3027711596 hasConcept C202444582 @default.
- W3027711596 hasConcept C22789450 @default.
- W3027711596 hasConcept C33923547 @default.
- W3027711596 hasConcept C41008148 @default.
- W3027711596 hasConcept C4199805 @default.
- W3027711596 hasConcept C42355184 @default.
- W3027711596 hasConcept C62520636 @default.
- W3027711596 hasConcept C92207270 @default.
- W3027711596 hasConcept C99498987 @default.
- W3027711596 hasConceptScore W3027711596C105795698 @default.
- W3027711596 hasConceptScore W3027711596C113315163 @default.
- W3027711596 hasConceptScore W3027711596C11413529 @default.
- W3027711596 hasConceptScore W3027711596C114614502 @default.