Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027724418> ?p ?o ?g. }
- W3027724418 endingPage "112046" @default.
- W3027724418 startingPage "112046" @default.
- W3027724418 abstract "Surface electromyography (sEMG) signals are expected to help recognize motions precisely and timely for its generation origins from muscular contractions. In most cases, existing researches about sEMG-based motion recognition cannot guarantee comprehensively excellent performance and apply flexibly to different types of motions. This paper proposes a new initiative via deep learning to recognize general composite motions, which processes sEMG signals as images. Inspired by several definitions of “sEMG Image” for static gestures, we define a novel “sEMG Image” to represent composite motions, which can make different cooperation of muscles reflected on image textures. With a well-designed convolutional neural network (CNN), this method can obtain effective filters automatically to extract features of texture by the training of considerable data. The results from two experiments of different composite motion recognition (including gentle writing motions and drastic sign language motions) indicate that this method embraces high accuracies and strong generalization ability for several influence factors. In addition, two techniques are proposed to further optimize this method: pre-train the network with an irrelevant dataset to reduce the demand for data and speed up the convergence; fuse multiple sensors with simple modifications for CNN to improve performance greatly." @default.
- W3027724418 created "2020-05-29" @default.
- W3027724418 creator A5008388493 @default.
- W3027724418 creator A5022963216 @default.
- W3027724418 creator A5035124841 @default.
- W3027724418 creator A5041037440 @default.
- W3027724418 creator A5045430434 @default.
- W3027724418 creator A5068984195 @default.
- W3027724418 date "2020-08-01" @default.
- W3027724418 modified "2023-10-16" @default.
- W3027724418 title "sEMG-based recognition of composite motion with convolutional neural network" @default.
- W3027724418 cites W1966455806 @default.
- W3027724418 cites W2003748371 @default.
- W3027724418 cites W2043212614 @default.
- W3027724418 cites W2044628302 @default.
- W3027724418 cites W2081187920 @default.
- W3027724418 cites W2091139114 @default.
- W3027724418 cites W2107641306 @default.
- W3027724418 cites W2108225567 @default.
- W3027724418 cites W2111135417 @default.
- W3027724418 cites W2112796928 @default.
- W3027724418 cites W2125648709 @default.
- W3027724418 cites W2133935519 @default.
- W3027724418 cites W2260466135 @default.
- W3027724418 cites W2277108862 @default.
- W3027724418 cites W2488164446 @default.
- W3027724418 cites W2516046201 @default.
- W3027724418 cites W2516710120 @default.
- W3027724418 cites W2589747988 @default.
- W3027724418 cites W2724987239 @default.
- W3027724418 cites W2775447708 @default.
- W3027724418 cites W2807631444 @default.
- W3027724418 cites W2898716605 @default.
- W3027724418 cites W2958266761 @default.
- W3027724418 doi "https://doi.org/10.1016/j.sna.2020.112046" @default.
- W3027724418 hasPublicationYear "2020" @default.
- W3027724418 type Work @default.
- W3027724418 sameAs 3027724418 @default.
- W3027724418 citedByCount "9" @default.
- W3027724418 countsByYear W30277244182021 @default.
- W3027724418 countsByYear W30277244182022 @default.
- W3027724418 crossrefType "journal-article" @default.
- W3027724418 hasAuthorship W3027724418A5008388493 @default.
- W3027724418 hasAuthorship W3027724418A5022963216 @default.
- W3027724418 hasAuthorship W3027724418A5035124841 @default.
- W3027724418 hasAuthorship W3027724418A5041037440 @default.
- W3027724418 hasAuthorship W3027724418A5045430434 @default.
- W3027724418 hasAuthorship W3027724418A5068984195 @default.
- W3027724418 hasConcept C104114177 @default.
- W3027724418 hasConcept C115961682 @default.
- W3027724418 hasConcept C119599485 @default.
- W3027724418 hasConcept C127413603 @default.
- W3027724418 hasConcept C134306372 @default.
- W3027724418 hasConcept C141353440 @default.
- W3027724418 hasConcept C153180895 @default.
- W3027724418 hasConcept C154945302 @default.
- W3027724418 hasConcept C177148314 @default.
- W3027724418 hasConcept C207347870 @default.
- W3027724418 hasConcept C28490314 @default.
- W3027724418 hasConcept C31972630 @default.
- W3027724418 hasConcept C33923547 @default.
- W3027724418 hasConcept C41008148 @default.
- W3027724418 hasConcept C50644808 @default.
- W3027724418 hasConcept C81363708 @default.
- W3027724418 hasConceptScore W3027724418C104114177 @default.
- W3027724418 hasConceptScore W3027724418C115961682 @default.
- W3027724418 hasConceptScore W3027724418C119599485 @default.
- W3027724418 hasConceptScore W3027724418C127413603 @default.
- W3027724418 hasConceptScore W3027724418C134306372 @default.
- W3027724418 hasConceptScore W3027724418C141353440 @default.
- W3027724418 hasConceptScore W3027724418C153180895 @default.
- W3027724418 hasConceptScore W3027724418C154945302 @default.
- W3027724418 hasConceptScore W3027724418C177148314 @default.
- W3027724418 hasConceptScore W3027724418C207347870 @default.
- W3027724418 hasConceptScore W3027724418C28490314 @default.
- W3027724418 hasConceptScore W3027724418C31972630 @default.
- W3027724418 hasConceptScore W3027724418C33923547 @default.
- W3027724418 hasConceptScore W3027724418C41008148 @default.
- W3027724418 hasConceptScore W3027724418C50644808 @default.
- W3027724418 hasConceptScore W3027724418C81363708 @default.
- W3027724418 hasFunder F4320321001 @default.
- W3027724418 hasLocation W30277244181 @default.
- W3027724418 hasOpenAccess W3027724418 @default.
- W3027724418 hasPrimaryLocation W30277244181 @default.
- W3027724418 hasRelatedWork W1570848052 @default.
- W3027724418 hasRelatedWork W1924837940 @default.
- W3027724418 hasRelatedWork W2066003895 @default.
- W3027724418 hasRelatedWork W2349788282 @default.
- W3027724418 hasRelatedWork W2354322770 @default.
- W3027724418 hasRelatedWork W2373192430 @default.
- W3027724418 hasRelatedWork W2537963312 @default.
- W3027724418 hasRelatedWork W3000097931 @default.
- W3027724418 hasRelatedWork W4239268388 @default.
- W3027724418 hasRelatedWork W577271088 @default.
- W3027724418 hasVolume "311" @default.
- W3027724418 isParatext "false" @default.
- W3027724418 isRetracted "false" @default.
- W3027724418 magId "3027724418" @default.