Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027747421> ?p ?o ?g. }
- W3027747421 endingPage "8831" @default.
- W3027747421 startingPage "8820" @default.
- W3027747421 abstract "The increasingly sophisticated cyber attacks have become a serious challenge for Industrial Internet of Things (IIoT), which presents two new characteristics: low frequency and multi-stage. That is, hackers could gain authority to attack industrial equipment/infrastructure gradually in a long interval through lurking, lateral intrusion and privilege escalation. While, the existing Machine Learning (ML) based intrusion detection schemes all require the participation of expert knowledge, so it is difficult to adaptively select an attack interval and a retraining period of the detection model in IIoT, resulting in poor detection performance. To solve above problems, a bidirectional long and short-term memory network with multi-feature layer (B-MLSTM) is designed. Firstly, sequence and stage feature layers are introduced in the model training phase model which can learn the corresponding attack interval from historical data, so that the model can effectively detect attacks with different intervals. Then, a double-layer reverse unit is introduced to update the detection model. By collecting information from test data and making association analysis with historical data, the retraining period is adaptively selected to match the new attack interval. Compared with the previous works, our proposed scheme has a lower false positive rate than existing schemes by at least 46.79%, and the false negative rate is reduced by at least 79.85%, which are carried out on three classic IIoT datasets." @default.
- W3027747421 created "2020-05-29" @default.
- W3027747421 creator A5002622136 @default.
- W3027747421 creator A5018991440 @default.
- W3027747421 creator A5028044712 @default.
- W3027747421 creator A5035761438 @default.
- W3027747421 creator A5058120371 @default.
- W3027747421 date "2020-08-01" @default.
- W3027747421 modified "2023-10-16" @default.
- W3027747421 title "Detection of Low-Frequency and Multi-Stage Attacks in Industrial Internet of Things" @default.
- W3027747421 cites W1501439223 @default.
- W3027747421 cites W195047088 @default.
- W3027747421 cites W2028070713 @default.
- W3027747421 cites W2064675550 @default.
- W3027747421 cites W2090230944 @default.
- W3027747421 cites W2099940443 @default.
- W3027747421 cites W2108721666 @default.
- W3027747421 cites W2112090702 @default.
- W3027747421 cites W2141910941 @default.
- W3027747421 cites W2220974964 @default.
- W3027747421 cites W2259641022 @default.
- W3027747421 cites W2281821379 @default.
- W3027747421 cites W2287094062 @default.
- W3027747421 cites W2339435260 @default.
- W3027747421 cites W2474500119 @default.
- W3027747421 cites W2583684061 @default.
- W3027747421 cites W2591696201 @default.
- W3027747421 cites W2598939142 @default.
- W3027747421 cites W2605181596 @default.
- W3027747421 cites W2605406533 @default.
- W3027747421 cites W2615695282 @default.
- W3027747421 cites W2734779510 @default.
- W3027747421 cites W2749247755 @default.
- W3027747421 cites W2750618092 @default.
- W3027747421 cites W2760889278 @default.
- W3027747421 cites W2766624504 @default.
- W3027747421 cites W2771783069 @default.
- W3027747421 cites W2774661609 @default.
- W3027747421 cites W2783033852 @default.
- W3027747421 cites W2789266794 @default.
- W3027747421 cites W2790544619 @default.
- W3027747421 cites W2791525675 @default.
- W3027747421 cites W2791895144 @default.
- W3027747421 cites W2893259508 @default.
- W3027747421 cites W2904056191 @default.
- W3027747421 cites W2922482186 @default.
- W3027747421 cites W2944930308 @default.
- W3027747421 cites W2945186677 @default.
- W3027747421 cites W2947535144 @default.
- W3027747421 cites W2957231479 @default.
- W3027747421 cites W2978709092 @default.
- W3027747421 cites W3010660075 @default.
- W3027747421 doi "https://doi.org/10.1109/tvt.2020.2995133" @default.
- W3027747421 hasPublicationYear "2020" @default.
- W3027747421 type Work @default.
- W3027747421 sameAs 3027747421 @default.
- W3027747421 citedByCount "34" @default.
- W3027747421 countsByYear W30277474212020 @default.
- W3027747421 countsByYear W30277474212021 @default.
- W3027747421 countsByYear W30277474212022 @default.
- W3027747421 countsByYear W30277474212023 @default.
- W3027747421 crossrefType "journal-article" @default.
- W3027747421 hasAuthorship W3027747421A5002622136 @default.
- W3027747421 hasAuthorship W3027747421A5018991440 @default.
- W3027747421 hasAuthorship W3027747421A5028044712 @default.
- W3027747421 hasAuthorship W3027747421A5035761438 @default.
- W3027747421 hasAuthorship W3027747421A5058120371 @default.
- W3027747421 hasConcept C110875604 @default.
- W3027747421 hasConcept C114614502 @default.
- W3027747421 hasConcept C119857082 @default.
- W3027747421 hasConcept C124101348 @default.
- W3027747421 hasConcept C136764020 @default.
- W3027747421 hasConcept C138885662 @default.
- W3027747421 hasConcept C154945302 @default.
- W3027747421 hasConcept C2776401178 @default.
- W3027747421 hasConcept C2778067643 @default.
- W3027747421 hasConcept C33923547 @default.
- W3027747421 hasConcept C35525427 @default.
- W3027747421 hasConcept C38652104 @default.
- W3027747421 hasConcept C41008148 @default.
- W3027747421 hasConcept C41895202 @default.
- W3027747421 hasConcept C79403827 @default.
- W3027747421 hasConcept C86844869 @default.
- W3027747421 hasConceptScore W3027747421C110875604 @default.
- W3027747421 hasConceptScore W3027747421C114614502 @default.
- W3027747421 hasConceptScore W3027747421C119857082 @default.
- W3027747421 hasConceptScore W3027747421C124101348 @default.
- W3027747421 hasConceptScore W3027747421C136764020 @default.
- W3027747421 hasConceptScore W3027747421C138885662 @default.
- W3027747421 hasConceptScore W3027747421C154945302 @default.
- W3027747421 hasConceptScore W3027747421C2776401178 @default.
- W3027747421 hasConceptScore W3027747421C2778067643 @default.
- W3027747421 hasConceptScore W3027747421C33923547 @default.
- W3027747421 hasConceptScore W3027747421C35525427 @default.
- W3027747421 hasConceptScore W3027747421C38652104 @default.
- W3027747421 hasConceptScore W3027747421C41008148 @default.
- W3027747421 hasConceptScore W3027747421C41895202 @default.
- W3027747421 hasConceptScore W3027747421C79403827 @default.