Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027751917> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3027751917 endingPage "43" @default.
- W3027751917 startingPage "29" @default.
- W3027751917 abstract "Hidden Markov models (HMMs) are widely used to analyze heterogeneous longitudinal data owing to their capability to model dynamic heterogeneity. Early advancements in HMMs have mainly assumed that the number of hidden states is fixed and predetermined based on the knowledge of the subjects or a certain criterion. However, as a limitation, this approach determines the number of hidden states on a pairwise basis, which becomes increasingly tedious when the state space is enlarged. Moreover, criterion-based statistics tend to select complex models with overestimated numbers of components in mixture modeling. A full Bayesian approach is developed to analyze hidden Markov structural equation models with an unknown number of hidden states. An efficient and hybrid algorithm that combines the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm, the forward filtering and backward sampling scheme, and the Metropolis-Hastings algorithm is proposed to simultaneously select the number of hidden states and perform parameter estimation. The simulation study shows the satisfactory performance of the proposed method. Two real datasets collected from the UCLA Drug Abuse Research Center and National Longitudinal Survey of Youth are analyzed." @default.
- W3027751917 created "2020-05-29" @default.
- W3027751917 creator A5006004614 @default.
- W3027751917 creator A5020019504 @default.
- W3027751917 date "2021-04-01" @default.
- W3027751917 modified "2023-10-16" @default.
- W3027751917 title "Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states" @default.
- W3027751917 cites W1947560069 @default.
- W3027751917 cites W1982891217 @default.
- W3027751917 cites W1987401658 @default.
- W3027751917 cites W1996525588 @default.
- W3027751917 cites W2003872007 @default.
- W3027751917 cites W2005599241 @default.
- W3027751917 cites W2015558203 @default.
- W3027751917 cites W2038885294 @default.
- W3027751917 cites W2055480977 @default.
- W3027751917 cites W2058177657 @default.
- W3027751917 cites W2106706098 @default.
- W3027751917 cites W2148534890 @default.
- W3027751917 cites W2153882688 @default.
- W3027751917 cites W2158266063 @default.
- W3027751917 cites W2406321312 @default.
- W3027751917 cites W2758461379 @default.
- W3027751917 cites W2765146325 @default.
- W3027751917 cites W2777552396 @default.
- W3027751917 cites W2902445064 @default.
- W3027751917 cites W3007936654 @default.
- W3027751917 doi "https://doi.org/10.1016/j.ecosta.2020.03.003" @default.
- W3027751917 hasPublicationYear "2021" @default.
- W3027751917 type Work @default.
- W3027751917 sameAs 3027751917 @default.
- W3027751917 citedByCount "7" @default.
- W3027751917 countsByYear W30277519172020 @default.
- W3027751917 countsByYear W30277519172021 @default.
- W3027751917 countsByYear W30277519172023 @default.
- W3027751917 crossrefType "journal-article" @default.
- W3027751917 hasAuthorship W3027751917A5006004614 @default.
- W3027751917 hasAuthorship W3027751917A5020019504 @default.
- W3027751917 hasConcept C105795698 @default.
- W3027751917 hasConcept C107673813 @default.
- W3027751917 hasConcept C111350023 @default.
- W3027751917 hasConcept C11413529 @default.
- W3027751917 hasConcept C119857082 @default.
- W3027751917 hasConcept C154945302 @default.
- W3027751917 hasConcept C163836022 @default.
- W3027751917 hasConcept C184898388 @default.
- W3027751917 hasConcept C23224414 @default.
- W3027751917 hasConcept C2780591659 @default.
- W3027751917 hasConcept C33923547 @default.
- W3027751917 hasConcept C41008148 @default.
- W3027751917 hasConcept C54907487 @default.
- W3027751917 hasConcept C64939953 @default.
- W3027751917 hasConcept C72434380 @default.
- W3027751917 hasConcept C98763669 @default.
- W3027751917 hasConceptScore W3027751917C105795698 @default.
- W3027751917 hasConceptScore W3027751917C107673813 @default.
- W3027751917 hasConceptScore W3027751917C111350023 @default.
- W3027751917 hasConceptScore W3027751917C11413529 @default.
- W3027751917 hasConceptScore W3027751917C119857082 @default.
- W3027751917 hasConceptScore W3027751917C154945302 @default.
- W3027751917 hasConceptScore W3027751917C163836022 @default.
- W3027751917 hasConceptScore W3027751917C184898388 @default.
- W3027751917 hasConceptScore W3027751917C23224414 @default.
- W3027751917 hasConceptScore W3027751917C2780591659 @default.
- W3027751917 hasConceptScore W3027751917C33923547 @default.
- W3027751917 hasConceptScore W3027751917C41008148 @default.
- W3027751917 hasConceptScore W3027751917C54907487 @default.
- W3027751917 hasConceptScore W3027751917C64939953 @default.
- W3027751917 hasConceptScore W3027751917C72434380 @default.
- W3027751917 hasConceptScore W3027751917C98763669 @default.
- W3027751917 hasFunder F4320321592 @default.
- W3027751917 hasFunder F4320322942 @default.
- W3027751917 hasFunder F4320325440 @default.
- W3027751917 hasLocation W30277519171 @default.
- W3027751917 hasOpenAccess W3027751917 @default.
- W3027751917 hasPrimaryLocation W30277519171 @default.
- W3027751917 hasRelatedWork W1696993418 @default.
- W3027751917 hasRelatedWork W1816225866 @default.
- W3027751917 hasRelatedWork W2118728396 @default.
- W3027751917 hasRelatedWork W2136799844 @default.
- W3027751917 hasRelatedWork W2152621450 @default.
- W3027751917 hasRelatedWork W2161328464 @default.
- W3027751917 hasRelatedWork W2382132287 @default.
- W3027751917 hasRelatedWork W2809247795 @default.
- W3027751917 hasRelatedWork W3027751917 @default.
- W3027751917 hasRelatedWork W3164302780 @default.
- W3027751917 hasVolume "18" @default.
- W3027751917 isParatext "false" @default.
- W3027751917 isRetracted "false" @default.
- W3027751917 magId "3027751917" @default.
- W3027751917 workType "article" @default.