Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027847900> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W3027847900 abstract "Growing demand for hospital healthcare services has brought significant challenges for their managers. Variables with high uncertainty degree, such as the number of patients and the duration of their treatments, hinders the planning processes and make it difficult to properly comply with the established strategies. Controlling and identifying factors that affect the hospital management process depends on health database analysis. Therefore, it is important to consider the possibility of prospecting useful knowledge from the stored data. The objective of this research is to evaluate the hospital morbidity prediction through different data mining methods on ambulatory and hospital procedure records obtained from Brazilian public health databases. The research method consists of performing a predictive data mining by applying supervised learning algorithms on a regression problem. The highest Pearson correlation coefficient individually obtained in the three-month prediction time interval, through the data mining method that applied random forest associated with an attribute selection algorithm on the disease group of the ICD10 chapter XVI (Certain Conditions originating in the Perinatal Period), was 0.9682. Different results were achieved depending on the method applied, the group of diseases analyzed, and the proposed prediction time interval, which led to the conclusion that data mining on ambulatory and hospital records allowed the prediction of hospital morbidity. The hospital morbidity predictions obtained can minimize the undesired effect of the demand randomness for health services in the decision-making process." @default.
- W3027847900 created "2020-05-29" @default.
- W3027847900 creator A5076476739 @default.
- W3027847900 creator A5090003102 @default.
- W3027847900 date "2020-03-01" @default.
- W3027847900 modified "2023-10-17" @default.
- W3027847900 title "Data Mining for Hospital Morbidity Forecasting" @default.
- W3027847900 doi "https://doi.org/10.1109/icsa-c50368.2020.00037" @default.
- W3027847900 hasPublicationYear "2020" @default.
- W3027847900 type Work @default.
- W3027847900 sameAs 3027847900 @default.
- W3027847900 citedByCount "0" @default.
- W3027847900 crossrefType "proceedings-article" @default.
- W3027847900 hasAuthorship W3027847900A5076476739 @default.
- W3027847900 hasAuthorship W3027847900A5090003102 @default.
- W3027847900 hasConcept C105795698 @default.
- W3027847900 hasConcept C111919701 @default.
- W3027847900 hasConcept C114614502 @default.
- W3027847900 hasConcept C124101348 @default.
- W3027847900 hasConcept C125112378 @default.
- W3027847900 hasConcept C2778067643 @default.
- W3027847900 hasConcept C33923547 @default.
- W3027847900 hasConcept C41008148 @default.
- W3027847900 hasConcept C98045186 @default.
- W3027847900 hasConceptScore W3027847900C105795698 @default.
- W3027847900 hasConceptScore W3027847900C111919701 @default.
- W3027847900 hasConceptScore W3027847900C114614502 @default.
- W3027847900 hasConceptScore W3027847900C124101348 @default.
- W3027847900 hasConceptScore W3027847900C125112378 @default.
- W3027847900 hasConceptScore W3027847900C2778067643 @default.
- W3027847900 hasConceptScore W3027847900C33923547 @default.
- W3027847900 hasConceptScore W3027847900C41008148 @default.
- W3027847900 hasConceptScore W3027847900C98045186 @default.
- W3027847900 hasLocation W30278479001 @default.
- W3027847900 hasOpenAccess W3027847900 @default.
- W3027847900 hasPrimaryLocation W30278479001 @default.
- W3027847900 hasRelatedWork W1880657 @default.
- W3027847900 hasRelatedWork W2816391 @default.
- W3027847900 hasRelatedWork W3619446 @default.
- W3027847900 hasRelatedWork W4780711 @default.
- W3027847900 hasRelatedWork W555121 @default.
- W3027847900 hasRelatedWork W8478743 @default.
- W3027847900 hasRelatedWork W8506750 @default.
- W3027847900 hasRelatedWork W8837133 @default.
- W3027847900 hasRelatedWork W8938619 @default.
- W3027847900 hasRelatedWork W11812383 @default.
- W3027847900 isParatext "false" @default.
- W3027847900 isRetracted "false" @default.
- W3027847900 magId "3027847900" @default.
- W3027847900 workType "article" @default.