Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027889410> ?p ?o ?g. }
- W3027889410 abstract "Abstract Electronic health records (EHR) are rich heterogeneous collections of patient health information, whose broad adoption provides clinicians and researchers unprecedented opportunities for health informatics, disease-risk prediction, actionable clinical recommendations, and precision medicine. However, EHRs present several modeling challenges, including highly sparse data matrices, noisy irregular clinical notes, arbitrary biases in billing code assignment, diagnosis-driven lab tests, and heterogeneous data types. To address these challenges, we present MixEHR, a multi-view Bayesian topic model. We demonstrate MixEHR on MIMIC-III, Mayo Clinic Bipolar Disorder, and Quebec Congenital Heart Disease EHR datasets. Qualitatively, MixEHR disease topics reveal meaningful combinations of clinical features across heterogeneous data types. Quantitatively, we observe superior prediction accuracy of diagnostic codes and lab test imputations compared to the state-of-art methods. We leverage the inferred patient topic mixtures to classify target diseases and predict mortality of patients in critical conditions. In all comparison, MixEHR confers competitive performance and reveals meaningful disease-related topics." @default.
- W3027889410 created "2020-05-29" @default.
- W3027889410 creator A5004933429 @default.
- W3027889410 creator A5007656836 @default.
- W3027889410 creator A5008601756 @default.
- W3027889410 creator A5014670663 @default.
- W3027889410 creator A5024068774 @default.
- W3027889410 creator A5029433360 @default.
- W3027889410 creator A5031123252 @default.
- W3027889410 creator A5032536633 @default.
- W3027889410 creator A5036966304 @default.
- W3027889410 creator A5041324980 @default.
- W3027889410 creator A5042421322 @default.
- W3027889410 creator A5044367029 @default.
- W3027889410 creator A5050515785 @default.
- W3027889410 creator A5052975209 @default.
- W3027889410 creator A5058631326 @default.
- W3027889410 creator A5063213559 @default.
- W3027889410 creator A5068597405 @default.
- W3027889410 creator A5088395323 @default.
- W3027889410 creator A5089977648 @default.
- W3027889410 date "2020-05-21" @default.
- W3027889410 modified "2023-10-16" @default.
- W3027889410 title "Inferring multimodal latent topics from electronic health records" @default.
- W3027889410 cites W1566015795 @default.
- W3027889410 cites W1902526473 @default.
- W3027889410 cites W1969116741 @default.
- W3027889410 cites W1976801265 @default.
- W3027889410 cites W2001082470 @default.
- W3027889410 cites W2001975024 @default.
- W3027889410 cites W2014096189 @default.
- W3027889410 cites W2020631728 @default.
- W3027889410 cites W2040339824 @default.
- W3027889410 cites W2046996951 @default.
- W3027889410 cites W2099866409 @default.
- W3027889410 cites W2115098571 @default.
- W3027889410 cites W2119467086 @default.
- W3027889410 cites W2130428211 @default.
- W3027889410 cites W2161793142 @default.
- W3027889410 cites W2171353991 @default.
- W3027889410 cites W2174706414 @default.
- W3027889410 cites W2284851926 @default.
- W3027889410 cites W2396881363 @default.
- W3027889410 cites W2404901863 @default.
- W3027889410 cites W2481271618 @default.
- W3027889410 cites W2511950764 @default.
- W3027889410 cites W2557074642 @default.
- W3027889410 cites W2969522674 @default.
- W3027889410 cites W2996824246 @default.
- W3027889410 cites W2998962218 @default.
- W3027889410 cites W3098949126 @default.
- W3027889410 cites W4237840503 @default.
- W3027889410 doi "https://doi.org/10.1038/s41467-020-16378-3" @default.
- W3027889410 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7242436" @default.
- W3027889410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32439869" @default.
- W3027889410 hasPublicationYear "2020" @default.
- W3027889410 type Work @default.
- W3027889410 sameAs 3027889410 @default.
- W3027889410 citedByCount "36" @default.
- W3027889410 countsByYear W30278894102020 @default.
- W3027889410 countsByYear W30278894102021 @default.
- W3027889410 countsByYear W30278894102022 @default.
- W3027889410 countsByYear W30278894102023 @default.
- W3027889410 crossrefType "journal-article" @default.
- W3027889410 hasAuthorship W3027889410A5004933429 @default.
- W3027889410 hasAuthorship W3027889410A5007656836 @default.
- W3027889410 hasAuthorship W3027889410A5008601756 @default.
- W3027889410 hasAuthorship W3027889410A5014670663 @default.
- W3027889410 hasAuthorship W3027889410A5024068774 @default.
- W3027889410 hasAuthorship W3027889410A5029433360 @default.
- W3027889410 hasAuthorship W3027889410A5031123252 @default.
- W3027889410 hasAuthorship W3027889410A5032536633 @default.
- W3027889410 hasAuthorship W3027889410A5036966304 @default.
- W3027889410 hasAuthorship W3027889410A5041324980 @default.
- W3027889410 hasAuthorship W3027889410A5042421322 @default.
- W3027889410 hasAuthorship W3027889410A5044367029 @default.
- W3027889410 hasAuthorship W3027889410A5050515785 @default.
- W3027889410 hasAuthorship W3027889410A5052975209 @default.
- W3027889410 hasAuthorship W3027889410A5058631326 @default.
- W3027889410 hasAuthorship W3027889410A5063213559 @default.
- W3027889410 hasAuthorship W3027889410A5068597405 @default.
- W3027889410 hasAuthorship W3027889410A5088395323 @default.
- W3027889410 hasAuthorship W3027889410A5089977648 @default.
- W3027889410 hasBestOaLocation W30278894101 @default.
- W3027889410 hasConcept C119599485 @default.
- W3027889410 hasConcept C119857082 @default.
- W3027889410 hasConcept C124101348 @default.
- W3027889410 hasConcept C127413603 @default.
- W3027889410 hasConcept C138816342 @default.
- W3027889410 hasConcept C142724271 @default.
- W3027889410 hasConcept C145642194 @default.
- W3027889410 hasConcept C153083717 @default.
- W3027889410 hasConcept C154945302 @default.
- W3027889410 hasConcept C160735492 @default.
- W3027889410 hasConcept C162324750 @default.
- W3027889410 hasConcept C163763905 @default.
- W3027889410 hasConcept C191630685 @default.
- W3027889410 hasConcept C2522767166 @default.
- W3027889410 hasConcept C2908647359 @default.
- W3027889410 hasConcept C3019952477 @default.