Matches in SemOpenAlex for { <https://semopenalex.org/work/W3027902656> ?p ?o ?g. }
- W3027902656 endingPage "97382" @default.
- W3027902656 startingPage "97370" @default.
- W3027902656 abstract "This study focused on the topic of predicting “proactive personality”. With 901 participants selected by cluster sampling method, targeted short-answer questions text and participants' social media post text (Weibo) were obtained while participants' labels of proactive personality were evaluated by experts. In order to make classification, five machine learning algorithms included Support Vector Machine (SVM), XGBoost, K-Nearest-Neighbors (KNN), Naive Bayes (NB) and Logistic Regression (LR) were deployed. Seven different indicators, which include Accuracy (ACC), F1-score (F1), Sensitivity (SEN), Specificity (SPE), Positive Predictive Value (PPV), Negative Predictive Value (NPV) and Area under Curve (AUC), combined with hierarchical cross-validation were also used to make the comprehensive evaluation of models. With participants' Weibo text and short-answer questions text, we proposed a new approach to classify individuals' proactive personality based on text mining technology. The results showed that short-answer questions + Weibo text datasets had the best performance, followed by short-answer questions text datasets, while the outcome of Weibo text datasets were the worst. However, it is noteworthy that Weibo text has the highest average score on the SPE, which indicated that Weibo text played an important role in identifying individuals with low proactive personality. With Weibo text, SEN was also improved compared with only applying short-answer questions text. In addition, among all three datasets, the indicator SPE is always higher than SEN, indicating this text classification approach was more competent for identifying college students with low proactive personality. As for algorithms, Support Vector Machine and Logistic Regression showed steadier performance compared with other algorithms." @default.
- W3027902656 created "2020-05-29" @default.
- W3027902656 creator A5011946290 @default.
- W3027902656 creator A5042241049 @default.
- W3027902656 creator A5058176560 @default.
- W3027902656 creator A5068867110 @default.
- W3027902656 creator A5076566531 @default.
- W3027902656 creator A5089448604 @default.
- W3027902656 creator A5090272442 @default.
- W3027902656 date "2020-01-01" @default.
- W3027902656 modified "2023-09-28" @default.
- W3027902656 title "Classification of Proactive Personality: Text Mining Based on Weibo Text and Short-Answer Questions Text" @default.
- W3027902656 cites W1937731213 @default.
- W3027902656 cites W1993755899 @default.
- W3027902656 cites W1994410331 @default.
- W3027902656 cites W2003622106 @default.
- W3027902656 cites W2040387584 @default.
- W3027902656 cites W2049389686 @default.
- W3027902656 cites W2055520584 @default.
- W3027902656 cites W2056068852 @default.
- W3027902656 cites W2077889659 @default.
- W3027902656 cites W2081646573 @default.
- W3027902656 cites W2098235528 @default.
- W3027902656 cites W2104437727 @default.
- W3027902656 cites W2106905725 @default.
- W3027902656 cites W2108564850 @default.
- W3027902656 cites W2119595472 @default.
- W3027902656 cites W2153803020 @default.
- W3027902656 cites W2160861035 @default.
- W3027902656 cites W2167453047 @default.
- W3027902656 cites W2240029300 @default.
- W3027902656 cites W2280262306 @default.
- W3027902656 cites W2282109167 @default.
- W3027902656 cites W2285561519 @default.
- W3027902656 cites W2288739150 @default.
- W3027902656 cites W2335272770 @default.
- W3027902656 cites W2339961614 @default.
- W3027902656 cites W2465750682 @default.
- W3027902656 cites W2490629622 @default.
- W3027902656 cites W2519921819 @default.
- W3027902656 cites W2536667811 @default.
- W3027902656 cites W2560101698 @default.
- W3027902656 cites W2567342635 @default.
- W3027902656 cites W2574388714 @default.
- W3027902656 cites W2575891429 @default.
- W3027902656 cites W2602950195 @default.
- W3027902656 cites W2765204009 @default.
- W3027902656 cites W2766775687 @default.
- W3027902656 cites W2786684976 @default.
- W3027902656 cites W2790196831 @default.
- W3027902656 cites W2790353253 @default.
- W3027902656 cites W2790670377 @default.
- W3027902656 cites W2796302061 @default.
- W3027902656 cites W2804617103 @default.
- W3027902656 cites W2805564340 @default.
- W3027902656 cites W2887012287 @default.
- W3027902656 cites W2931178307 @default.
- W3027902656 cites W2932009903 @default.
- W3027902656 cites W2936284792 @default.
- W3027902656 cites W2943026016 @default.
- W3027902656 cites W2953178162 @default.
- W3027902656 cites W3102476541 @default.
- W3027902656 cites W4239646155 @default.
- W3027902656 cites W7914945 @default.
- W3027902656 doi "https://doi.org/10.1109/access.2020.2995905" @default.
- W3027902656 hasPublicationYear "2020" @default.
- W3027902656 type Work @default.
- W3027902656 sameAs 3027902656 @default.
- W3027902656 citedByCount "10" @default.
- W3027902656 countsByYear W30279026562021 @default.
- W3027902656 countsByYear W30279026562022 @default.
- W3027902656 countsByYear W30279026562023 @default.
- W3027902656 crossrefType "journal-article" @default.
- W3027902656 hasAuthorship W3027902656A5011946290 @default.
- W3027902656 hasAuthorship W3027902656A5042241049 @default.
- W3027902656 hasAuthorship W3027902656A5058176560 @default.
- W3027902656 hasAuthorship W3027902656A5068867110 @default.
- W3027902656 hasAuthorship W3027902656A5076566531 @default.
- W3027902656 hasAuthorship W3027902656A5089448604 @default.
- W3027902656 hasAuthorship W3027902656A5090272442 @default.
- W3027902656 hasBestOaLocation W30279026561 @default.
- W3027902656 hasConcept C119857082 @default.
- W3027902656 hasConcept C12267149 @default.
- W3027902656 hasConcept C136764020 @default.
- W3027902656 hasConcept C151956035 @default.
- W3027902656 hasConcept C154945302 @default.
- W3027902656 hasConcept C15744967 @default.
- W3027902656 hasConcept C187288502 @default.
- W3027902656 hasConcept C204321447 @default.
- W3027902656 hasConcept C41008148 @default.
- W3027902656 hasConcept C518677369 @default.
- W3027902656 hasConcept C52001869 @default.
- W3027902656 hasConcept C71472368 @default.
- W3027902656 hasConcept C77805123 @default.
- W3027902656 hasConceptScore W3027902656C119857082 @default.
- W3027902656 hasConceptScore W3027902656C12267149 @default.
- W3027902656 hasConceptScore W3027902656C136764020 @default.
- W3027902656 hasConceptScore W3027902656C151956035 @default.