Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028004889> ?p ?o ?g. }
- W3028004889 endingPage "107807" @default.
- W3028004889 startingPage "107807" @default.
- W3028004889 abstract "Remanufacturing is one of the most examined topics in the closed-loop supply chain (CLSC) literature. However, we still have limited knowledge on the characteristics of the market for remanufactured products. This study addresses this gap by using a big data analytics framework. We employ off-the-shelf, pre-trained vectors created with the Global Vectors for Word Representation (GloVe) word embedding method from a data set crawled from the Internet. The Louvain method subsequently provides us with clusters based on remanufacturing and related terms, without requiring human interactions. Our findings provide the following main insights. First, remanufacturing and related terms are associated with specific industries and products, among which printing equipment, automobiles and car parts, treadmills, consumer electronics, and household appliances. Among the terms capturing remanufacturing activity, remanufactured, reconditioned, and rebuilt are strongly associated with business-to-business and slow clockspeed products, while refurbished is mostly associated with business-to-consumer and fast clockspeed products. Second, original equipment manufacturers (OEMs) are much more salient than independent remanufacturers, and Japanese OEMs are especially well represented as players in the market for remanufacturing. Third, environmental concerns only appear weakly in the discourse surrounding product recovery, while consumers do seem to place emphasis on quality and price. In a final part of the study, we contrast the CLSC academic literature with the clusters obtained through our big data analysis, thereby identifying industries, products, and brands that are understudied. We also outline the practical implications of our work for managers involved in setting up a remanufacturing strategy, as well as regulators." @default.
- W3028004889 created "2020-05-29" @default.
- W3028004889 creator A5052079934 @default.
- W3028004889 creator A5074834668 @default.
- W3028004889 date "2020-12-01" @default.
- W3028004889 modified "2023-10-17" @default.
- W3028004889 title "Mapping the market for remanufacturing: An application of “Big Data” analytics" @default.
- W3028004889 cites W1493873819 @default.
- W3028004889 cites W1500626379 @default.
- W3028004889 cites W1505620336 @default.
- W3028004889 cites W1670651627 @default.
- W3028004889 cites W1763508469 @default.
- W3028004889 cites W1965380368 @default.
- W3028004889 cites W1969240017 @default.
- W3028004889 cites W1981990922 @default.
- W3028004889 cites W1983046573 @default.
- W3028004889 cites W1987248861 @default.
- W3028004889 cites W1991842457 @default.
- W3028004889 cites W1993663609 @default.
- W3028004889 cites W2016945820 @default.
- W3028004889 cites W2027353179 @default.
- W3028004889 cites W2033540544 @default.
- W3028004889 cites W2037127653 @default.
- W3028004889 cites W2037214369 @default.
- W3028004889 cites W2046858834 @default.
- W3028004889 cites W2050443272 @default.
- W3028004889 cites W2067767241 @default.
- W3028004889 cites W2068913793 @default.
- W3028004889 cites W2073827108 @default.
- W3028004889 cites W2076281238 @default.
- W3028004889 cites W2077965994 @default.
- W3028004889 cites W2087562021 @default.
- W3028004889 cites W2096825807 @default.
- W3028004889 cites W2100287230 @default.
- W3028004889 cites W2103030042 @default.
- W3028004889 cites W2112482196 @default.
- W3028004889 cites W2120622803 @default.
- W3028004889 cites W2123457740 @default.
- W3028004889 cites W2126229846 @default.
- W3028004889 cites W2127977814 @default.
- W3028004889 cites W2131681506 @default.
- W3028004889 cites W2142273936 @default.
- W3028004889 cites W2142609574 @default.
- W3028004889 cites W2166145143 @default.
- W3028004889 cites W2171468534 @default.
- W3028004889 cites W2182402457 @default.
- W3028004889 cites W2341815003 @default.
- W3028004889 cites W2412229027 @default.
- W3028004889 cites W2494872059 @default.
- W3028004889 cites W2512680836 @default.
- W3028004889 cites W2513618139 @default.
- W3028004889 cites W2567847964 @default.
- W3028004889 cites W2575219969 @default.
- W3028004889 cites W2593141568 @default.
- W3028004889 cites W2606175140 @default.
- W3028004889 cites W2623107000 @default.
- W3028004889 cites W2624239644 @default.
- W3028004889 cites W2735987736 @default.
- W3028004889 cites W2736196886 @default.
- W3028004889 cites W2763841931 @default.
- W3028004889 cites W2769358515 @default.
- W3028004889 cites W2782898642 @default.
- W3028004889 cites W2796222331 @default.
- W3028004889 cites W2884242239 @default.
- W3028004889 cites W2895830918 @default.
- W3028004889 cites W2897596136 @default.
- W3028004889 cites W2908572220 @default.
- W3028004889 cites W2964262738 @default.
- W3028004889 cites W3005935421 @default.
- W3028004889 cites W3121531251 @default.
- W3028004889 cites W3122500864 @default.
- W3028004889 cites W3123399111 @default.
- W3028004889 cites W3124200290 @default.
- W3028004889 cites W3124261657 @default.
- W3028004889 cites W3124347080 @default.
- W3028004889 cites W3124607532 @default.
- W3028004889 cites W3124724521 @default.
- W3028004889 cites W4205117840 @default.
- W3028004889 cites W7741801 @default.
- W3028004889 cites W947140380 @default.
- W3028004889 doi "https://doi.org/10.1016/j.ijpe.2020.107807" @default.
- W3028004889 hasPublicationYear "2020" @default.
- W3028004889 type Work @default.
- W3028004889 sameAs 3028004889 @default.
- W3028004889 citedByCount "9" @default.
- W3028004889 countsByYear W30280048892020 @default.
- W3028004889 countsByYear W30280048892021 @default.
- W3028004889 countsByYear W30280048892022 @default.
- W3028004889 countsByYear W30280048892023 @default.
- W3028004889 crossrefType "journal-article" @default.
- W3028004889 hasAuthorship W3028004889A5052079934 @default.
- W3028004889 hasAuthorship W3028004889A5074834668 @default.
- W3028004889 hasBestOaLocation W30280048892 @default.
- W3028004889 hasConcept C108713360 @default.
- W3028004889 hasConcept C111472728 @default.
- W3028004889 hasConcept C111919701 @default.
- W3028004889 hasConcept C117671659 @default.
- W3028004889 hasConcept C124101348 @default.