Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028263306> ?p ?o ?g. }
- W3028263306 endingPage "105433" @default.
- W3028263306 startingPage "105433" @default.
- W3028263306 abstract "Soybean (Glycine max (L.) Merrill) leaf chlorophyll content is indicative of the plant growth and health issues. However, chlorophyll measurement using the standard chemical procedure is laborious, while the sensor-based electronic options, such as soil plant analysis development (SPAD) meter tend to be highly expensive and made only spot measurements. Therefore, a simpler and less expensive infield method of chlorophyll measurement in soybeans using smartphone camera with image processing and machine learning models was developed. Soybean leaf images (720 images) and SPAD readings were collected from different cultivars (4), with replications (3) and sampling dates (2) from experimental plots. Of the several color vegetation indices (CVIs) tested, the dark green color index (DGCI) had the best correlation with SPAD meter readings (r=0.90), which was further improved by color calibration (r=0.93). The results of the random coefficients model showed that both cultivars and sampling dates had no significant effect (0.06≤P≤0.96), hence data were combined for the analysis. The simpler statistical linear regression (SLR) and polynomial regression (PR), multiple linear regression as well as the advanced machine learning models (support vector machine (SVM), random forest (RF)) tested with color scheme inputs (RGB, DGCI, range pixel count (RPC) of DGCI, and ‘Both’ (RPC + RGB)) produced the best chlorophyll prediction with DGCI, RPC, and ‘Both’ inputs (0.87<R2<0.89; 2.90≤RMSE≤3.41 SPAD units). Overall, these models were not significantly different, but the SVM model found to be the best (R2=0.89 and RMSE=2.90 SPAD units). The simpler SLR and PR models with DGCI input (R2≥0.87 and RMSE≤3.1 SPAD units) performed as good as the advanced SVM and RF models. The SVM model had the potential of predicting the chlorophyll directly with the raw RGB input (R2=0.86 and RMSE=3.20 SPAD units) without the need of using the standard calibration board. The developed methodology of image processing with machine learning modeling and conversion relationship of measuring infield soybean leaf chlorophyll is efficient, inexpensive, not requiring the standard calibration board, and can be easily extended to other large-scale aerial imaging platforms and field crops." @default.
- W3028263306 created "2020-05-29" @default.
- W3028263306 creator A5005454085 @default.
- W3028263306 creator A5009017682 @default.
- W3028263306 creator A5017894280 @default.
- W3028263306 creator A5062392537 @default.
- W3028263306 creator A5064453417 @default.
- W3028263306 creator A5068992719 @default.
- W3028263306 date "2020-07-01" @default.
- W3028263306 modified "2023-10-13" @default.
- W3028263306 title "Chlorophyll estimation in soybean leaves infield with smartphone digital imaging and machine learning" @default.
- W3028263306 cites W1964261730 @default.
- W3028263306 cites W1965117835 @default.
- W3028263306 cites W1968900381 @default.
- W3028263306 cites W1971742753 @default.
- W3028263306 cites W1973700570 @default.
- W3028263306 cites W1998405819 @default.
- W3028263306 cites W2003849249 @default.
- W3028263306 cites W2010762039 @default.
- W3028263306 cites W2023333852 @default.
- W3028263306 cites W2023766889 @default.
- W3028263306 cites W2024925469 @default.
- W3028263306 cites W2039952872 @default.
- W3028263306 cites W2041555594 @default.
- W3028263306 cites W2062262594 @default.
- W3028263306 cites W2067566204 @default.
- W3028263306 cites W2094108457 @default.
- W3028263306 cites W2115374941 @default.
- W3028263306 cites W2115436074 @default.
- W3028263306 cites W2128866545 @default.
- W3028263306 cites W2153127838 @default.
- W3028263306 cites W2163450852 @default.
- W3028263306 cites W2236735617 @default.
- W3028263306 cites W2282115801 @default.
- W3028263306 cites W2295297800 @default.
- W3028263306 cites W2394911398 @default.
- W3028263306 cites W2715659545 @default.
- W3028263306 cites W2796190970 @default.
- W3028263306 cites W2903703585 @default.
- W3028263306 doi "https://doi.org/10.1016/j.compag.2020.105433" @default.
- W3028263306 hasPublicationYear "2020" @default.
- W3028263306 type Work @default.
- W3028263306 sameAs 3028263306 @default.
- W3028263306 citedByCount "29" @default.
- W3028263306 countsByYear W30282633062020 @default.
- W3028263306 countsByYear W30282633062021 @default.
- W3028263306 countsByYear W30282633062022 @default.
- W3028263306 countsByYear W30282633062023 @default.
- W3028263306 crossrefType "journal-article" @default.
- W3028263306 hasAuthorship W3028263306A5005454085 @default.
- W3028263306 hasAuthorship W3028263306A5009017682 @default.
- W3028263306 hasAuthorship W3028263306A5017894280 @default.
- W3028263306 hasAuthorship W3028263306A5062392537 @default.
- W3028263306 hasAuthorship W3028263306A5064453417 @default.
- W3028263306 hasAuthorship W3028263306A5068992719 @default.
- W3028263306 hasBestOaLocation W30282633061 @default.
- W3028263306 hasConcept C105795698 @default.
- W3028263306 hasConcept C115961682 @default.
- W3028263306 hasConcept C119857082 @default.
- W3028263306 hasConcept C12267149 @default.
- W3028263306 hasConcept C139945424 @default.
- W3028263306 hasConcept C154945302 @default.
- W3028263306 hasConcept C169258074 @default.
- W3028263306 hasConcept C205649164 @default.
- W3028263306 hasConcept C33923547 @default.
- W3028263306 hasConcept C41008148 @default.
- W3028263306 hasConcept C42781572 @default.
- W3028263306 hasConcept C48921125 @default.
- W3028263306 hasConcept C62649853 @default.
- W3028263306 hasConcept C82990744 @default.
- W3028263306 hasConcept C9417928 @default.
- W3028263306 hasConceptScore W3028263306C105795698 @default.
- W3028263306 hasConceptScore W3028263306C115961682 @default.
- W3028263306 hasConceptScore W3028263306C119857082 @default.
- W3028263306 hasConceptScore W3028263306C12267149 @default.
- W3028263306 hasConceptScore W3028263306C139945424 @default.
- W3028263306 hasConceptScore W3028263306C154945302 @default.
- W3028263306 hasConceptScore W3028263306C169258074 @default.
- W3028263306 hasConceptScore W3028263306C205649164 @default.
- W3028263306 hasConceptScore W3028263306C33923547 @default.
- W3028263306 hasConceptScore W3028263306C41008148 @default.
- W3028263306 hasConceptScore W3028263306C42781572 @default.
- W3028263306 hasConceptScore W3028263306C48921125 @default.
- W3028263306 hasConceptScore W3028263306C62649853 @default.
- W3028263306 hasConceptScore W3028263306C82990744 @default.
- W3028263306 hasConceptScore W3028263306C9417928 @default.
- W3028263306 hasFunder F4320332299 @default.
- W3028263306 hasLocation W30282633061 @default.
- W3028263306 hasOpenAccess W3028263306 @default.
- W3028263306 hasPrimaryLocation W30282633061 @default.
- W3028263306 hasRelatedWork W1546989560 @default.
- W3028263306 hasRelatedWork W1924178503 @default.
- W3028263306 hasRelatedWork W2575795810 @default.
- W3028263306 hasRelatedWork W3117486017 @default.
- W3028263306 hasRelatedWork W3135126032 @default.
- W3028263306 hasRelatedWork W3171520305 @default.
- W3028263306 hasRelatedWork W3193043704 @default.
- W3028263306 hasRelatedWork W4280648719 @default.