Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028274526> ?p ?o ?g. }
- W3028274526 abstract "Abstract Background The signal peptides (SPs) of secretory proteins are frequently used or modified to guide recombinant proteins outside the cytoplasm of prokaryotic cells. In the periplasmic space and extracellular environment, recombinant proteins are kept away from the intracellular proteases and often they can fold correctly and efficiently. Consequently, expression levels of the recombinant protein can be enhanced by the presence of a SP. However, little attention has been paid to the use of SPs with low translocation efficiency for recombinant protein production. In this paper, the function of the signal peptide of Bacillus thuringiensis (Bt) Cry1Ia toxin (Iasp), which is speculated to be a weak translocation signal, on regulation of protein expression was investigated using fluorescent proteins as reporters. Results When fused to the N-terminal of eGFP or mCherry, the Iasp can improve the expression of the fluorescent proteins and as a consequence enhance the fluorescent intensity of both Escherichia coli and Bt host cells. Real-time quantitative PCR analysis revealed the higher transcript levels of Iegfp over those of egfp gene in E. coli TG1 cells. By immunoblot analysis and confocal microscope observation, lower translocation efficiency of IeGFP was demonstrated. The novel fluorescent fusion protein IeGFP was then used to compare the relative strengths of cry1Ia ( P i ) and cry1Ac ( P ac ) gene promoters in Bt strain, the latter promoter proving the stronger. The eGFP reporter, by contrast, cannot indicate unambiguously the regulation pattern of P i at the same level of sensitivity. The fluorescent signals of E. coli and Bt cells expressing the Iasp fused mCherry (ImCherry) were also enhanced. Importantly, the Iasp can also enhanced the expression of two difficult-to-express proteins, matrix metalloprotease-13 (MMP13) and myostatin (growth differentiating factor-8, GDF8) in E. coli BL21-star (DE3) strain. Conclusions We identified the positive effects of a weak signal peptide, Iasp, on the expression of fluorescent proteins and other recombinant proteins in bacteria. The produced IeGFP and ImCherry can be used as novel fluorescent protein variants in prokaryotic cells. The results suggested the potential application of Iasp as a novel fusion tag for improving the recombinant protein expression." @default.
- W3028274526 created "2020-05-29" @default.
- W3028274526 creator A5020243167 @default.
- W3028274526 creator A5020309881 @default.
- W3028274526 creator A5025090993 @default.
- W3028274526 creator A5029547598 @default.
- W3028274526 creator A5039024579 @default.
- W3028274526 creator A5049888271 @default.
- W3028274526 creator A5056364957 @default.
- W3028274526 creator A5058426833 @default.
- W3028274526 creator A5064694488 @default.
- W3028274526 creator A5077702921 @default.
- W3028274526 creator A5078031489 @default.
- W3028274526 creator A5084428369 @default.
- W3028274526 creator A5089857457 @default.
- W3028274526 creator A5091044855 @default.
- W3028274526 date "2020-05-24" @default.
- W3028274526 modified "2023-10-16" @default.
- W3028274526 title "The signal peptide of Cry1Ia can improve the expression of eGFP or mCherry in Escherichia coli and Bacillus thuringiensis and enhance the host’s fluorescent intensity" @default.
- W3028274526 cites W1519297291 @default.
- W3028274526 cites W1578108777 @default.
- W3028274526 cites W1589389588 @default.
- W3028274526 cites W1753768803 @default.
- W3028274526 cites W1835357910 @default.
- W3028274526 cites W1931534490 @default.
- W3028274526 cites W1972189437 @default.
- W3028274526 cites W1973631653 @default.
- W3028274526 cites W1974440020 @default.
- W3028274526 cites W1987209219 @default.
- W3028274526 cites W1990577248 @default.
- W3028274526 cites W1991337435 @default.
- W3028274526 cites W2000994784 @default.
- W3028274526 cites W2007264976 @default.
- W3028274526 cites W2007402269 @default.
- W3028274526 cites W2028014512 @default.
- W3028274526 cites W2030239671 @default.
- W3028274526 cites W2041914510 @default.
- W3028274526 cites W2045593525 @default.
- W3028274526 cites W2047186187 @default.
- W3028274526 cites W2050088265 @default.
- W3028274526 cites W2051228958 @default.
- W3028274526 cites W2051242197 @default.
- W3028274526 cites W2053902075 @default.
- W3028274526 cites W2058268622 @default.
- W3028274526 cites W2062731288 @default.
- W3028274526 cites W2065049493 @default.
- W3028274526 cites W2074664766 @default.
- W3028274526 cites W2082311924 @default.
- W3028274526 cites W2084789382 @default.
- W3028274526 cites W2085078959 @default.
- W3028274526 cites W2087314254 @default.
- W3028274526 cites W2087823077 @default.
- W3028274526 cites W2088972187 @default.
- W3028274526 cites W2089597488 @default.
- W3028274526 cites W2089732797 @default.
- W3028274526 cites W2090103138 @default.
- W3028274526 cites W2090315126 @default.
- W3028274526 cites W2092195809 @default.
- W3028274526 cites W2098571862 @default.
- W3028274526 cites W2107847732 @default.
- W3028274526 cites W2114570899 @default.
- W3028274526 cites W2119336718 @default.
- W3028274526 cites W2122500226 @default.
- W3028274526 cites W2127068865 @default.
- W3028274526 cites W2130599662 @default.
- W3028274526 cites W2133245867 @default.
- W3028274526 cites W2143094150 @default.
- W3028274526 cites W2148059091 @default.
- W3028274526 cites W2151567065 @default.
- W3028274526 cites W2156405987 @default.
- W3028274526 cites W2167574642 @default.
- W3028274526 cites W2169515696 @default.
- W3028274526 cites W2209715414 @default.
- W3028274526 cites W2259283565 @default.
- W3028274526 cites W2570253006 @default.
- W3028274526 cites W2593054682 @default.
- W3028274526 cites W2600458905 @default.
- W3028274526 cites W2754554192 @default.
- W3028274526 cites W2810456342 @default.
- W3028274526 cites W2906714690 @default.
- W3028274526 cites W2986477971 @default.
- W3028274526 doi "https://doi.org/10.1186/s12934-020-01371-8" @default.
- W3028274526 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7247199" @default.
- W3028274526 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32448275" @default.
- W3028274526 hasPublicationYear "2020" @default.
- W3028274526 type Work @default.
- W3028274526 sameAs 3028274526 @default.
- W3028274526 citedByCount "3" @default.
- W3028274526 countsByYear W30282745262022 @default.
- W3028274526 countsByYear W30282745262023 @default.
- W3028274526 crossrefType "journal-article" @default.
- W3028274526 hasAuthorship W3028274526A5020243167 @default.
- W3028274526 hasAuthorship W3028274526A5020309881 @default.
- W3028274526 hasAuthorship W3028274526A5025090993 @default.
- W3028274526 hasAuthorship W3028274526A5029547598 @default.
- W3028274526 hasAuthorship W3028274526A5039024579 @default.
- W3028274526 hasAuthorship W3028274526A5049888271 @default.
- W3028274526 hasAuthorship W3028274526A5056364957 @default.
- W3028274526 hasAuthorship W3028274526A5058426833 @default.
- W3028274526 hasAuthorship W3028274526A5064694488 @default.