Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028282246> ?p ?o ?g. }
- W3028282246 endingPage "43" @default.
- W3028282246 startingPage "33" @default.
- W3028282246 abstract "High-throughput imaging methods can be applied to relevant cell culture models, fostering their use in research and translational applications. Improvements in microscopy, computational capabilities and data analysis have enabled high-throughput, high-content approaches from endpoint 2D microscopy images. Nonetheless, trade-offs in acquisition, computation and storage between content and throughput remain, in particular when cells and cell structures are imaged in 3D. Moreover, live 3D phase contrast microscopy images are not often amenable to analysis because of the high level of background noise. Cultures of Human induced pluripotent stem cells (hiPSC) offer unprecedented scope to profile and screen conditions affecting cell fate decisions, self-organisation and early embryonic development. However, quantifying changes in the morphology or function of cell structures derived from hiPSCs over time presents significant challenges. Here, we report a novel method based on the analysis of live phase contrast microscopy images of hiPSC spheroids. We compare self-renewing versus differentiating media conditions, which give rise to spheroids with distinct morphologies; round versus branched, respectively. These cell structures are segmented from 2D projections and analysed based on frame-to-frame variations. Importantly, a tailored convolutional neural network is trained and applied to predict culture conditions from time-frame images. We compare our results with more classic and involved endpoint 3D confocal microscopy and propose that such approaches can complement spheroid-based assays developed for the purpose of screening and profiling. This workflow can be realistically implemented in laboratories using imaging-based high-throughput methods for regenerative medicine and drug discovery." @default.
- W3028282246 created "2020-05-29" @default.
- W3028282246 creator A5022912891 @default.
- W3028282246 creator A5027594656 @default.
- W3028282246 creator A5032041878 @default.
- W3028282246 creator A5039532433 @default.
- W3028282246 creator A5047317861 @default.
- W3028282246 creator A5085596118 @default.
- W3028282246 creator A5090455506 @default.
- W3028282246 date "2021-06-01" @default.
- W3028282246 modified "2023-10-06" @default.
- W3028282246 title "An integrated pipeline for high-throughput screening and profiling of spheroids using simple live image analysis of frame to frame variations" @default.
- W3028282246 cites W1965674737 @default.
- W3028282246 cites W2031959888 @default.
- W3028282246 cites W2038484136 @default.
- W3028282246 cites W2107554012 @default.
- W3028282246 cites W2116454541 @default.
- W3028282246 cites W2128026414 @default.
- W3028282246 cites W2218734510 @default.
- W3028282246 cites W2340102874 @default.
- W3028282246 cites W2463090257 @default.
- W3028282246 cites W2520107693 @default.
- W3028282246 cites W2531559910 @default.
- W3028282246 cites W2613179652 @default.
- W3028282246 cites W2751625431 @default.
- W3028282246 cites W2821017730 @default.
- W3028282246 cites W2914369935 @default.
- W3028282246 cites W2915808837 @default.
- W3028282246 cites W2924454562 @default.
- W3028282246 cites W2989991450 @default.
- W3028282246 doi "https://doi.org/10.1016/j.ymeth.2020.05.017" @default.
- W3028282246 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8165939" @default.
- W3028282246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32446959" @default.
- W3028282246 hasPublicationYear "2021" @default.
- W3028282246 type Work @default.
- W3028282246 sameAs 3028282246 @default.
- W3028282246 citedByCount "12" @default.
- W3028282246 countsByYear W30282822462020 @default.
- W3028282246 countsByYear W30282822462021 @default.
- W3028282246 countsByYear W30282822462022 @default.
- W3028282246 countsByYear W30282822462023 @default.
- W3028282246 crossrefType "journal-article" @default.
- W3028282246 hasAuthorship W3028282246A5022912891 @default.
- W3028282246 hasAuthorship W3028282246A5027594656 @default.
- W3028282246 hasAuthorship W3028282246A5032041878 @default.
- W3028282246 hasAuthorship W3028282246A5039532433 @default.
- W3028282246 hasAuthorship W3028282246A5047317861 @default.
- W3028282246 hasAuthorship W3028282246A5085596118 @default.
- W3028282246 hasAuthorship W3028282246A5090455506 @default.
- W3028282246 hasBestOaLocation W30282822461 @default.
- W3028282246 hasConcept C104317684 @default.
- W3028282246 hasConcept C107459253 @default.
- W3028282246 hasConcept C111919701 @default.
- W3028282246 hasConcept C142724271 @default.
- W3028282246 hasConcept C145103041 @default.
- W3028282246 hasConcept C147080431 @default.
- W3028282246 hasConcept C1491633281 @default.
- W3028282246 hasConcept C154945302 @default.
- W3028282246 hasConcept C157044486 @default.
- W3028282246 hasConcept C157764524 @default.
- W3028282246 hasConcept C175369904 @default.
- W3028282246 hasConcept C177212765 @default.
- W3028282246 hasConcept C187191949 @default.
- W3028282246 hasConcept C3261483 @default.
- W3028282246 hasConcept C41008148 @default.
- W3028282246 hasConcept C54355233 @default.
- W3028282246 hasConcept C55493867 @default.
- W3028282246 hasConcept C555944384 @default.
- W3028282246 hasConcept C70721500 @default.
- W3028282246 hasConcept C71924100 @default.
- W3028282246 hasConcept C76155785 @default.
- W3028282246 hasConcept C77088390 @default.
- W3028282246 hasConcept C81363708 @default.
- W3028282246 hasConcept C81885089 @default.
- W3028282246 hasConcept C86803240 @default.
- W3028282246 hasConceptScore W3028282246C104317684 @default.
- W3028282246 hasConceptScore W3028282246C107459253 @default.
- W3028282246 hasConceptScore W3028282246C111919701 @default.
- W3028282246 hasConceptScore W3028282246C142724271 @default.
- W3028282246 hasConceptScore W3028282246C145103041 @default.
- W3028282246 hasConceptScore W3028282246C147080431 @default.
- W3028282246 hasConceptScore W3028282246C1491633281 @default.
- W3028282246 hasConceptScore W3028282246C154945302 @default.
- W3028282246 hasConceptScore W3028282246C157044486 @default.
- W3028282246 hasConceptScore W3028282246C157764524 @default.
- W3028282246 hasConceptScore W3028282246C175369904 @default.
- W3028282246 hasConceptScore W3028282246C177212765 @default.
- W3028282246 hasConceptScore W3028282246C187191949 @default.
- W3028282246 hasConceptScore W3028282246C3261483 @default.
- W3028282246 hasConceptScore W3028282246C41008148 @default.
- W3028282246 hasConceptScore W3028282246C54355233 @default.
- W3028282246 hasConceptScore W3028282246C55493867 @default.
- W3028282246 hasConceptScore W3028282246C555944384 @default.
- W3028282246 hasConceptScore W3028282246C70721500 @default.
- W3028282246 hasConceptScore W3028282246C71924100 @default.
- W3028282246 hasConceptScore W3028282246C76155785 @default.
- W3028282246 hasConceptScore W3028282246C77088390 @default.
- W3028282246 hasConceptScore W3028282246C81363708 @default.