Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028306149> ?p ?o ?g. }
- W3028306149 endingPage "612" @default.
- W3028306149 startingPage "597" @default.
- W3028306149 abstract "In hyperspectral image (HSI) classification, spatial context has demonstrated its significance in achieving promising performance. However, conventional spatial context-based methods simply assume that spatially neighboring pixels should correspond to the same land-cover class, so they often fail to correctly discover the contextual relations among pixels in complex situations, and thus leading to imperfect classification results on some irregular or inhomogeneous regions such as class boundaries. To address this deficiency, we develop a new HSI classification method based on the recently proposed Graph Convolutional Network (GCN), as it can flexibly encode the relations among arbitrarily structured non-Euclidean data. Different from traditional GCN, there are two novel strategies adopted by our method to further exploit the contextual relations for accurate HSI classification. First, since the receptive field of traditional GCN is often limited to fairly small neighborhood, we proposed to capture long range contextual relations in HSI by performing successive graph convolutions on a learned region-induced graph which is transformed from the original 2D image grids. Second, we refine the graph edge weight and the connective relationships among image regions by learning the improved adjacency matrix and the 'edge filter', so that the graph can be gradually refined to adapt to the representations generated by each graph convolutional layer. Such updated graph will in turn result in accurate region representations, and vice versa. The experiments carried out on three real-world benchmark datasets demonstrate that the proposed method yields significant improvement in the classification performance when compared with some state-of-the-art approaches." @default.
- W3028306149 created "2020-05-29" @default.
- W3028306149 creator A5008056593 @default.
- W3028306149 creator A5018712863 @default.
- W3028306149 creator A5058747937 @default.
- W3028306149 creator A5062318228 @default.
- W3028306149 creator A5079446826 @default.
- W3028306149 creator A5079556851 @default.
- W3028306149 date "2021-01-01" @default.
- W3028306149 modified "2023-10-17" @default.
- W3028306149 title "Hyperspectral Image Classification With Context-Aware Dynamic Graph Convolutional Network" @default.
- W3028306149 cites W1588948804 @default.
- W3028306149 cites W1667249920 @default.
- W3028306149 cites W1939429412 @default.
- W3028306149 cites W1980641044 @default.
- W3028306149 cites W2001298023 @default.
- W3028306149 cites W2008233110 @default.
- W3028306149 cites W2041100636 @default.
- W3028306149 cites W2064604707 @default.
- W3028306149 cites W2090277988 @default.
- W3028306149 cites W2097915756 @default.
- W3028306149 cites W2113101204 @default.
- W3028306149 cites W2113513024 @default.
- W3028306149 cites W2117741752 @default.
- W3028306149 cites W2118246710 @default.
- W3028306149 cites W2124571274 @default.
- W3028306149 cites W2136251662 @default.
- W3028306149 cites W2158787690 @default.
- W3028306149 cites W2249375231 @default.
- W3028306149 cites W2548791488 @default.
- W3028306149 cites W2767805377 @default.
- W3028306149 cites W2789643644 @default.
- W3028306149 cites W2792083654 @default.
- W3028306149 cites W2892621946 @default.
- W3028306149 cites W2984795071 @default.
- W3028306149 cites W2991494819 @default.
- W3028306149 cites W3104795559 @default.
- W3028306149 cites W3105136071 @default.
- W3028306149 doi "https://doi.org/10.1109/tgrs.2020.2994205" @default.
- W3028306149 hasPublicationYear "2021" @default.
- W3028306149 type Work @default.
- W3028306149 sameAs 3028306149 @default.
- W3028306149 citedByCount "92" @default.
- W3028306149 countsByYear W30283061492020 @default.
- W3028306149 countsByYear W30283061492021 @default.
- W3028306149 countsByYear W30283061492022 @default.
- W3028306149 countsByYear W30283061492023 @default.
- W3028306149 crossrefType "journal-article" @default.
- W3028306149 hasAuthorship W3028306149A5008056593 @default.
- W3028306149 hasAuthorship W3028306149A5018712863 @default.
- W3028306149 hasAuthorship W3028306149A5058747937 @default.
- W3028306149 hasAuthorship W3028306149A5062318228 @default.
- W3028306149 hasAuthorship W3028306149A5079446826 @default.
- W3028306149 hasAuthorship W3028306149A5079556851 @default.
- W3028306149 hasBestOaLocation W30283061492 @default.
- W3028306149 hasConcept C110484373 @default.
- W3028306149 hasConcept C11413529 @default.
- W3028306149 hasConcept C132525143 @default.
- W3028306149 hasConcept C153180895 @default.
- W3028306149 hasConcept C154945302 @default.
- W3028306149 hasConcept C159078339 @default.
- W3028306149 hasConcept C160633673 @default.
- W3028306149 hasConcept C180356752 @default.
- W3028306149 hasConcept C41008148 @default.
- W3028306149 hasConcept C64754055 @default.
- W3028306149 hasConcept C80444323 @default.
- W3028306149 hasConceptScore W3028306149C110484373 @default.
- W3028306149 hasConceptScore W3028306149C11413529 @default.
- W3028306149 hasConceptScore W3028306149C132525143 @default.
- W3028306149 hasConceptScore W3028306149C153180895 @default.
- W3028306149 hasConceptScore W3028306149C154945302 @default.
- W3028306149 hasConceptScore W3028306149C159078339 @default.
- W3028306149 hasConceptScore W3028306149C160633673 @default.
- W3028306149 hasConceptScore W3028306149C180356752 @default.
- W3028306149 hasConceptScore W3028306149C41008148 @default.
- W3028306149 hasConceptScore W3028306149C64754055 @default.
- W3028306149 hasConceptScore W3028306149C80444323 @default.
- W3028306149 hasFunder F4320321001 @default.
- W3028306149 hasFunder F4320322769 @default.
- W3028306149 hasFunder F4320335787 @default.
- W3028306149 hasIssue "1" @default.
- W3028306149 hasLocation W30283061491 @default.
- W3028306149 hasLocation W30283061492 @default.
- W3028306149 hasOpenAccess W3028306149 @default.
- W3028306149 hasPrimaryLocation W30283061491 @default.
- W3028306149 hasRelatedWork W1869808405 @default.
- W3028306149 hasRelatedWork W1997912302 @default.
- W3028306149 hasRelatedWork W2086869014 @default.
- W3028306149 hasRelatedWork W2141195754 @default.
- W3028306149 hasRelatedWork W2565015337 @default.
- W3028306149 hasRelatedWork W2775464024 @default.
- W3028306149 hasRelatedWork W2783789044 @default.
- W3028306149 hasRelatedWork W2959008085 @default.
- W3028306149 hasRelatedWork W3034655717 @default.
- W3028306149 hasRelatedWork W3211035526 @default.
- W3028306149 hasVolume "59" @default.
- W3028306149 isParatext "false" @default.
- W3028306149 isRetracted "false" @default.