Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028312345> ?p ?o ?g. }
- W3028312345 endingPage "1313" @default.
- W3028312345 startingPage "1296" @default.
- W3028312345 abstract "Significance Statement Inverted formin 2 (INF2) is the key regulator of a stress response—calcium-mediated actin reset, or CaAR—that reorganizes the actin cytoskeleton of mammalian cells in response to calcium influx. INF2 has been linked to the podocytic kidney disease focal segemental glomerulosclerosis (FSGS) and to cases of the neurologic disorder Charcot–Marie–Tooth disease that are accompanied by FSGS. The authors show that >50 disease-associated INF2 variants lead to deregulation of CaAR in cell lines, in Drosophila nephrocytes, and in cells from patient cells with these disorders. Their findings suggest that CaAR can be used as a sensitive assay for INF2 function and for robust evaluation of disease-linked variants of this formin. This work also highlights the use of quantitative cellular assays in assessing effects of disease-associated mutations to better understand complex disease phenotypes. Background Monogenic diseases provide favorable opportunities to elucidate the molecular mechanisms of disease progression and improve medical diagnostics. However, the complex interplay between genetic and environmental factors in disease etiologies makes it difficult to discern the mechanistic links between different alleles of a single locus and their associated pathophysiologies. Inverted formin 2 (INF2), an actin regulator, mediates a stress response—calcium mediated actin reset, or CaAR—that reorganizes the actin cytoskeleton of mammalian cells in response to calcium influx. It has been linked to the podocytic kidney disease focal segemental glomerulosclerosis (FSGS), as well as to cases of the neurologic disorder Charcot–Marie–Tooth disease that are accompanied by nephropathy, mostly FSGS. Methods We used a combination of quantitative live cell imaging and validation in primary patient cells and Drosophila nephrocytes to systematically characterize a large panel of >50 autosomal dominant INF2 mutants that have been reported to cause either FSGS alone or with Charcot–Marie–Tooth disease. Results We found that INF2 mutations lead to deregulated activation of formin and a constitutive stress response in cultured cells, primary patient cells, and Drosophila nephrocytes. We were able to clearly distinguish between INF2 mutations that were linked exclusively to FSGS from those that caused a combination of FSGS and Charcot–Marie–Tooth disease. Furthermore, we were able to identify distinct subsets of INF2 variants that exhibit varying degrees of activation. Conclusions Our results suggest that CaAR can be used as a sensitive assay for INF2 function and for robust evaluation of diseased-linked variants of formin. More broadly, these findings indicate that cellular profiling of disease-associated mutations has potential to contribute substantially to sequence-based phenotype predictions." @default.
- W3028312345 created "2020-05-29" @default.
- W3028312345 creator A5014253128 @default.
- W3028312345 creator A5019869697 @default.
- W3028312345 creator A5033524356 @default.
- W3028312345 creator A5033941353 @default.
- W3028312345 creator A5035419968 @default.
- W3028312345 creator A5040784680 @default.
- W3028312345 creator A5044525861 @default.
- W3028312345 creator A5051132400 @default.
- W3028312345 creator A5060601222 @default.
- W3028312345 creator A5069412321 @default.
- W3028312345 creator A5081857161 @default.
- W3028312345 creator A5088151341 @default.
- W3028312345 date "2020-05-22" @default.
- W3028312345 modified "2023-10-12" @default.
- W3028312345 title "A Deregulated Stress Response Underlies Distinct INF2-Associated Disease Profiles" @default.
- W3028312345 cites W1547861484 @default.
- W3028312345 cites W1806045747 @default.
- W3028312345 cites W1967907739 @default.
- W3028312345 cites W1969774286 @default.
- W3028312345 cites W1972768758 @default.
- W3028312345 cites W1973631445 @default.
- W3028312345 cites W1988051514 @default.
- W3028312345 cites W1990488096 @default.
- W3028312345 cites W1995570962 @default.
- W3028312345 cites W1998740840 @default.
- W3028312345 cites W2004389655 @default.
- W3028312345 cites W2012997980 @default.
- W3028312345 cites W2024913007 @default.
- W3028312345 cites W2027933994 @default.
- W3028312345 cites W2035537416 @default.
- W3028312345 cites W2043394285 @default.
- W3028312345 cites W2043832873 @default.
- W3028312345 cites W2048677414 @default.
- W3028312345 cites W2050715723 @default.
- W3028312345 cites W2054986021 @default.
- W3028312345 cites W2065535173 @default.
- W3028312345 cites W2081673717 @default.
- W3028312345 cites W2081812303 @default.
- W3028312345 cites W2099207002 @default.
- W3028312345 cites W2104010513 @default.
- W3028312345 cites W2109379148 @default.
- W3028312345 cites W2127253331 @default.
- W3028312345 cites W2130552692 @default.
- W3028312345 cites W2132739680 @default.
- W3028312345 cites W2132940916 @default.
- W3028312345 cites W2149259704 @default.
- W3028312345 cites W2164445378 @default.
- W3028312345 cites W2276693548 @default.
- W3028312345 cites W2313039692 @default.
- W3028312345 cites W2408876195 @default.
- W3028312345 cites W2468275850 @default.
- W3028312345 cites W2531687260 @default.
- W3028312345 cites W2559859124 @default.
- W3028312345 cites W2560515229 @default.
- W3028312345 cites W2563128472 @default.
- W3028312345 cites W2567119546 @default.
- W3028312345 cites W2736028843 @default.
- W3028312345 cites W2754552962 @default.
- W3028312345 cites W2763650358 @default.
- W3028312345 cites W2888525578 @default.
- W3028312345 cites W2945385700 @default.
- W3028312345 cites W2952567086 @default.
- W3028312345 cites W3000331969 @default.
- W3028312345 doi "https://doi.org/10.1681/asn.2019111174" @default.
- W3028312345 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7269351" @default.
- W3028312345 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32444357" @default.
- W3028312345 hasPublicationYear "2020" @default.
- W3028312345 type Work @default.
- W3028312345 sameAs 3028312345 @default.
- W3028312345 citedByCount "20" @default.
- W3028312345 countsByYear W30283123452020 @default.
- W3028312345 countsByYear W30283123452021 @default.
- W3028312345 countsByYear W30283123452022 @default.
- W3028312345 countsByYear W30283123452023 @default.
- W3028312345 crossrefType "journal-article" @default.
- W3028312345 hasAuthorship W3028312345A5014253128 @default.
- W3028312345 hasAuthorship W3028312345A5019869697 @default.
- W3028312345 hasAuthorship W3028312345A5033524356 @default.
- W3028312345 hasAuthorship W3028312345A5033941353 @default.
- W3028312345 hasAuthorship W3028312345A5035419968 @default.
- W3028312345 hasAuthorship W3028312345A5040784680 @default.
- W3028312345 hasAuthorship W3028312345A5044525861 @default.
- W3028312345 hasAuthorship W3028312345A5051132400 @default.
- W3028312345 hasAuthorship W3028312345A5060601222 @default.
- W3028312345 hasAuthorship W3028312345A5069412321 @default.
- W3028312345 hasAuthorship W3028312345A5081857161 @default.
- W3028312345 hasAuthorship W3028312345A5088151341 @default.
- W3028312345 hasBestOaLocation W30283123451 @default.
- W3028312345 hasConcept C125705527 @default.
- W3028312345 hasConcept C142669718 @default.
- W3028312345 hasConcept C1491633281 @default.
- W3028312345 hasConcept C2778415529 @default.
- W3028312345 hasConcept C2780091579 @default.
- W3028312345 hasConcept C2780368995 @default.
- W3028312345 hasConcept C2993400109 @default.
- W3028312345 hasConcept C53195969 @default.