Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028345072> ?p ?o ?g. }
- W3028345072 abstract "Cyber-Physical Systems (CPS), including smart industrial manufacturing, smart transportation, and smart grids, among others, are envisioned to convert traditionally isolated automated critical systems into modern interconnected intelligent systems via interconnected human, system, and physical assets, as well as providing significant economic and societal benefits. The characteristics of CPS include complexity, dynamic variability, and heterogeneity, arising from interactions between cyber and physical subsystems. These characteristics introduce critical challenges in addition to existing and vital safety and reliability requirements from traditional critical systems. To overcome these challenges, Artificial Intelligence (AI) and Machine Learning (ML) schemes, which have proven effective in numerous fields (robotics, automation, prediction, etc.), can be leveraged as solutions for CPS. In particular, reinforcement learning can make precise decisions automatically to maximize cumulative reward via systematic trial and error in an unknown environment. Yet, challenges still remain for integrating complex reinforcement learning systems with dynamic and diverse CPS domains. In this paper, we conduct a thorough investigation of existing research on reinforcement learning for CPS, and propose a framework for future research. In addition, we carry out two case studies on reinforcement learning in transportation CPS and industrial CPS to validate the effectiveness of reinforcement learning in targeted applications. Using realistic simulation platforms, we validate the effectiveness of reinforcement learning for decision making in routing for transportation CPS and production control for industrial CPS. Finally, we outline some future research challenges that remain." @default.
- W3028345072 created "2020-05-29" @default.
- W3028345072 creator A5002139930 @default.
- W3028345072 creator A5012732696 @default.
- W3028345072 creator A5039412958 @default.
- W3028345072 creator A5083406034 @default.
- W3028345072 date "2019-11-01" @default.
- W3028345072 modified "2023-09-26" @default.
- W3028345072 title "Reinforcement Learning for Cyber-Physical Systems" @default.
- W3028345072 cites W1074958431 @default.
- W3028345072 cites W1565454011 @default.
- W3028345072 cites W1570018622 @default.
- W3028345072 cites W1718306640 @default.
- W3028345072 cites W1920147670 @default.
- W3028345072 cites W1972116103 @default.
- W3028345072 cites W1973767013 @default.
- W3028345072 cites W1977655452 @default.
- W3028345072 cites W2000875519 @default.
- W3028345072 cites W2031080041 @default.
- W3028345072 cites W2098897917 @default.
- W3028345072 cites W2138583691 @default.
- W3028345072 cites W2214212631 @default.
- W3028345072 cites W2247689341 @default.
- W3028345072 cites W2257979135 @default.
- W3028345072 cites W2281611560 @default.
- W3028345072 cites W2296033070 @default.
- W3028345072 cites W2324861975 @default.
- W3028345072 cites W2336888468 @default.
- W3028345072 cites W2416477367 @default.
- W3028345072 cites W2480177474 @default.
- W3028345072 cites W2514619461 @default.
- W3028345072 cites W2525486061 @default.
- W3028345072 cites W2562141967 @default.
- W3028345072 cites W2580909119 @default.
- W3028345072 cites W2591980212 @default.
- W3028345072 cites W2596636257 @default.
- W3028345072 cites W2617931713 @default.
- W3028345072 cites W2734506266 @default.
- W3028345072 cites W2738778707 @default.
- W3028345072 cites W2752236613 @default.
- W3028345072 cites W2756144809 @default.
- W3028345072 cites W2761862361 @default.
- W3028345072 cites W2762709466 @default.
- W3028345072 cites W2768475350 @default.
- W3028345072 cites W2769651885 @default.
- W3028345072 cites W2771454953 @default.
- W3028345072 cites W2772526503 @default.
- W3028345072 cites W2787536066 @default.
- W3028345072 cites W2787538211 @default.
- W3028345072 cites W2788005034 @default.
- W3028345072 cites W2789896367 @default.
- W3028345072 cites W2792852625 @default.
- W3028345072 cites W2795276745 @default.
- W3028345072 cites W2800017313 @default.
- W3028345072 cites W2805258854 @default.
- W3028345072 cites W2810867071 @default.
- W3028345072 cites W2884730950 @default.
- W3028345072 cites W2884804201 @default.
- W3028345072 cites W2886509985 @default.
- W3028345072 cites W2888704015 @default.
- W3028345072 cites W2889043402 @default.
- W3028345072 cites W2889540440 @default.
- W3028345072 cites W2898035736 @default.
- W3028345072 cites W2901412726 @default.
- W3028345072 cites W2902264868 @default.
- W3028345072 cites W2902371444 @default.
- W3028345072 cites W2903362341 @default.
- W3028345072 cites W2904835122 @default.
- W3028345072 cites W2913127416 @default.
- W3028345072 cites W2916441259 @default.
- W3028345072 cites W2916857868 @default.
- W3028345072 cites W2924868849 @default.
- W3028345072 cites W2926519916 @default.
- W3028345072 cites W2927314564 @default.
- W3028345072 cites W2943466984 @default.
- W3028345072 cites W2945235903 @default.
- W3028345072 cites W2962846391 @default.
- W3028345072 cites W2962853428 @default.
- W3028345072 cites W2962883549 @default.
- W3028345072 cites W2962893277 @default.
- W3028345072 cites W2963382853 @default.
- W3028345072 cites W2965165621 @default.
- W3028345072 cites W2980360843 @default.
- W3028345072 cites W2997415264 @default.
- W3028345072 cites W3100789280 @default.
- W3028345072 cites W3104727908 @default.
- W3028345072 doi "https://doi.org/10.1109/icii.2019.00063" @default.
- W3028345072 hasPublicationYear "2019" @default.
- W3028345072 type Work @default.
- W3028345072 sameAs 3028345072 @default.
- W3028345072 citedByCount "10" @default.
- W3028345072 countsByYear W30283450722021 @default.
- W3028345072 countsByYear W30283450722022 @default.
- W3028345072 countsByYear W30283450722023 @default.
- W3028345072 crossrefType "proceedings-article" @default.
- W3028345072 hasAuthorship W3028345072A5002139930 @default.
- W3028345072 hasAuthorship W3028345072A5012732696 @default.
- W3028345072 hasAuthorship W3028345072A5039412958 @default.
- W3028345072 hasAuthorship W3028345072A5083406034 @default.
- W3028345072 hasConcept C111919701 @default.