Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028457518> ?p ?o ?g. }
- W3028457518 endingPage "107327" @default.
- W3028457518 startingPage "107327" @default.
- W3028457518 abstract "Existing research on cascading failures of wireless sensor networks (WSNs) fails to take into account the role of the sink node on network load distribution, and rarely involves how to improve network robustness, so it has obvious limitations. To this end, this paper presents a sink-oriented cascading model for WSNs. On this basis, a memetic algorithm MA-TOSCA is proposed to help WSNs resist cascading failures via topology optimization, in which the local search operator is designed based on a new network balancing metric “sink-oriented betweenness entropy”. Moreover, we apply network statistics to identify the correlation between typical network properties and network robustness. Extensive simulations have shown that the proposed model can properly characterize the cascading process of WSNs and MA-TOSCA can find more robust topology with less time compared to existing algorithms. In addition, we discover that a network with the “onion-grid topology structure” is highly robust; the network communication efficiency, the modularity and the clustering coefficient is positively related to network robustness and the average shortest path length is negatively related to network robustness." @default.
- W3028457518 created "2020-05-29" @default.
- W3028457518 creator A5035734476 @default.
- W3028457518 creator A5051147714 @default.
- W3028457518 creator A5060399655 @default.
- W3028457518 creator A5086764064 @default.
- W3028457518 creator A5088770849 @default.
- W3028457518 date "2020-08-01" @default.
- W3028457518 modified "2023-10-02" @default.
- W3028457518 title "Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm" @default.
- W3028457518 cites W1951028534 @default.
- W3028457518 cites W1973390474 @default.
- W3028457518 cites W2000072548 @default.
- W3028457518 cites W2009093872 @default.
- W3028457518 cites W2010900291 @default.
- W3028457518 cites W2024374088 @default.
- W3028457518 cites W2025994857 @default.
- W3028457518 cites W2026808254 @default.
- W3028457518 cites W2132145037 @default.
- W3028457518 cites W2330487032 @default.
- W3028457518 cites W2343473715 @default.
- W3028457518 cites W2560650325 @default.
- W3028457518 cites W2569901261 @default.
- W3028457518 cites W2588797870 @default.
- W3028457518 cites W2695737732 @default.
- W3028457518 cites W2740472760 @default.
- W3028457518 cites W2748886520 @default.
- W3028457518 cites W2776276349 @default.
- W3028457518 cites W2789061800 @default.
- W3028457518 cites W2791900527 @default.
- W3028457518 cites W2805585337 @default.
- W3028457518 cites W2860422899 @default.
- W3028457518 cites W2886968792 @default.
- W3028457518 cites W2892277620 @default.
- W3028457518 cites W2906237109 @default.
- W3028457518 cites W2914454482 @default.
- W3028457518 cites W2914627849 @default.
- W3028457518 cites W2928613640 @default.
- W3028457518 cites W2946471309 @default.
- W3028457518 cites W2955505714 @default.
- W3028457518 cites W2969264996 @default.
- W3028457518 cites W2969966087 @default.
- W3028457518 cites W2972125603 @default.
- W3028457518 cites W3102413836 @default.
- W3028457518 doi "https://doi.org/10.1016/j.comnet.2020.107327" @default.
- W3028457518 hasPublicationYear "2020" @default.
- W3028457518 type Work @default.
- W3028457518 sameAs 3028457518 @default.
- W3028457518 citedByCount "123" @default.
- W3028457518 countsByYear W30284575182020 @default.
- W3028457518 countsByYear W30284575182021 @default.
- W3028457518 countsByYear W30284575182022 @default.
- W3028457518 countsByYear W30284575182023 @default.
- W3028457518 crossrefType "journal-article" @default.
- W3028457518 hasAuthorship W3028457518A5035734476 @default.
- W3028457518 hasAuthorship W3028457518A5051147714 @default.
- W3028457518 hasAuthorship W3028457518A5060399655 @default.
- W3028457518 hasAuthorship W3028457518A5086764064 @default.
- W3028457518 hasAuthorship W3028457518A5088770849 @default.
- W3028457518 hasConcept C101142422 @default.
- W3028457518 hasConcept C104317684 @default.
- W3028457518 hasConcept C11413529 @default.
- W3028457518 hasConcept C114614502 @default.
- W3028457518 hasConcept C117045392 @default.
- W3028457518 hasConcept C119323957 @default.
- W3028457518 hasConcept C120314980 @default.
- W3028457518 hasConcept C121332964 @default.
- W3028457518 hasConcept C132525143 @default.
- W3028457518 hasConcept C136764020 @default.
- W3028457518 hasConcept C163258240 @default.
- W3028457518 hasConcept C184720557 @default.
- W3028457518 hasConcept C185592680 @default.
- W3028457518 hasConcept C199845137 @default.
- W3028457518 hasConcept C22590252 @default.
- W3028457518 hasConcept C24590314 @default.
- W3028457518 hasConcept C31258907 @default.
- W3028457518 hasConcept C33923547 @default.
- W3028457518 hasConcept C34947359 @default.
- W3028457518 hasConcept C41008148 @default.
- W3028457518 hasConcept C53811970 @default.
- W3028457518 hasConcept C55493867 @default.
- W3028457518 hasConcept C62520636 @default.
- W3028457518 hasConcept C63479239 @default.
- W3028457518 hasConcept C80444323 @default.
- W3028457518 hasConcept C89227174 @default.
- W3028457518 hasConcept C91886571 @default.
- W3028457518 hasConceptScore W3028457518C101142422 @default.
- W3028457518 hasConceptScore W3028457518C104317684 @default.
- W3028457518 hasConceptScore W3028457518C11413529 @default.
- W3028457518 hasConceptScore W3028457518C114614502 @default.
- W3028457518 hasConceptScore W3028457518C117045392 @default.
- W3028457518 hasConceptScore W3028457518C119323957 @default.
- W3028457518 hasConceptScore W3028457518C120314980 @default.
- W3028457518 hasConceptScore W3028457518C121332964 @default.
- W3028457518 hasConceptScore W3028457518C132525143 @default.
- W3028457518 hasConceptScore W3028457518C136764020 @default.
- W3028457518 hasConceptScore W3028457518C163258240 @default.
- W3028457518 hasConceptScore W3028457518C184720557 @default.