Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028482364> ?p ?o ?g. }
- W3028482364 endingPage "4341" @default.
- W3028482364 startingPage "4341" @default.
- W3028482364 abstract "In recent years, China’s urbanization rate has been increasing rapidly, reaching 59.58% in 2018. Urbanization drives rural-to-urban migration, and inevitably promotes urban sprawl. With the development of remote sensing and geographic information technologies, the monitoring technology for urban sprawl has been constantly innovated. In particular, the emergence of night light data has greatly promoted monitoring research of large-scale and long-time-series urban sprawl. In this paper, the urban sprawl in China in 1992, 1997, 2002, 2007, 2012, and 2017 was identified via night light data, and the Artificial Neural Network-Cellular Automata-Markov (ANN-CA-Markov) model was developed to simulate the future urban sprawl in China. The results show that the suitability of urban sprawl based on the ANN model is as high as 0.864, indicating that the ANN model is very suitable for the simulation of urban sprawl. The Kappa coefficient of simulation results was 0.78, indicating that the ANN-CA-Markov model has a high simulation accuracy on urban sprawl. In the future, the hotspot areas of urban sprawl in China will change over time. Although the urban sprawl in the Beijing-Tianjin-Hebei region, the Yangtze River delta, and the Pearl River delta will still be considerable, the urban sprawl in the Chengdu-Chongqing city cluster, the Guanzhong Plain city cluster, the central plains city cluster, and the middle reaches of the Yangtze River will be more prominent. Overall, China’s urban sprawl will be concentrated in the east of Hu’s line in the future." @default.
- W3028482364 created "2020-05-29" @default.
- W3028482364 creator A5057887535 @default.
- W3028482364 creator A5069974528 @default.
- W3028482364 creator A5091446769 @default.
- W3028482364 date "2020-05-26" @default.
- W3028482364 modified "2023-10-18" @default.
- W3028482364 title "Simulating Urban Sprawl in China Based on the Artificial Neural Network-Cellular Automata-Markov Model" @default.
- W3028482364 cites W1551584954 @default.
- W3028482364 cites W1975897253 @default.
- W3028482364 cites W1976328157 @default.
- W3028482364 cites W2001075407 @default.
- W3028482364 cites W2004855240 @default.
- W3028482364 cites W2023693832 @default.
- W3028482364 cites W2029612207 @default.
- W3028482364 cites W2031180101 @default.
- W3028482364 cites W2092225366 @default.
- W3028482364 cites W2100459552 @default.
- W3028482364 cites W2126823552 @default.
- W3028482364 cites W2146715087 @default.
- W3028482364 cites W2226798190 @default.
- W3028482364 cites W2540222487 @default.
- W3028482364 cites W2569312250 @default.
- W3028482364 cites W2601112859 @default.
- W3028482364 cites W2766019840 @default.
- W3028482364 cites W2768346106 @default.
- W3028482364 cites W2775521037 @default.
- W3028482364 cites W2809713439 @default.
- W3028482364 cites W2883876373 @default.
- W3028482364 cites W2899452179 @default.
- W3028482364 cites W2912777564 @default.
- W3028482364 cites W2913911554 @default.
- W3028482364 cites W2928412080 @default.
- W3028482364 cites W2932004029 @default.
- W3028482364 cites W2939408505 @default.
- W3028482364 cites W2944110300 @default.
- W3028482364 cites W2944655539 @default.
- W3028482364 cites W2945421875 @default.
- W3028482364 cites W2956666148 @default.
- W3028482364 cites W2965664738 @default.
- W3028482364 cites W2969748696 @default.
- W3028482364 cites W2971029832 @default.
- W3028482364 cites W2974375890 @default.
- W3028482364 cites W2979055326 @default.
- W3028482364 cites W3006682796 @default.
- W3028482364 doi "https://doi.org/10.3390/su12114341" @default.
- W3028482364 hasPublicationYear "2020" @default.
- W3028482364 type Work @default.
- W3028482364 sameAs 3028482364 @default.
- W3028482364 citedByCount "18" @default.
- W3028482364 countsByYear W30284823642020 @default.
- W3028482364 countsByYear W30284823642021 @default.
- W3028482364 countsByYear W30284823642022 @default.
- W3028482364 countsByYear W30284823642023 @default.
- W3028482364 crossrefType "journal-article" @default.
- W3028482364 hasAuthorship W3028482364A5057887535 @default.
- W3028482364 hasAuthorship W3028482364A5069974528 @default.
- W3028482364 hasAuthorship W3028482364A5091446769 @default.
- W3028482364 hasBestOaLocation W30284823641 @default.
- W3028482364 hasConcept C127413603 @default.
- W3028482364 hasConcept C147176958 @default.
- W3028482364 hasConcept C162324750 @default.
- W3028482364 hasConcept C166957645 @default.
- W3028482364 hasConcept C191935318 @default.
- W3028482364 hasConcept C205649164 @default.
- W3028482364 hasConcept C39853841 @default.
- W3028482364 hasConcept C487182 @default.
- W3028482364 hasConcept C49545453 @default.
- W3028482364 hasConcept C50522688 @default.
- W3028482364 hasConceptScore W3028482364C127413603 @default.
- W3028482364 hasConceptScore W3028482364C147176958 @default.
- W3028482364 hasConceptScore W3028482364C162324750 @default.
- W3028482364 hasConceptScore W3028482364C166957645 @default.
- W3028482364 hasConceptScore W3028482364C191935318 @default.
- W3028482364 hasConceptScore W3028482364C205649164 @default.
- W3028482364 hasConceptScore W3028482364C39853841 @default.
- W3028482364 hasConceptScore W3028482364C487182 @default.
- W3028482364 hasConceptScore W3028482364C49545453 @default.
- W3028482364 hasConceptScore W3028482364C50522688 @default.
- W3028482364 hasFunder F4320336213 @default.
- W3028482364 hasIssue "11" @default.
- W3028482364 hasLocation W30284823641 @default.
- W3028482364 hasLocation W30284823642 @default.
- W3028482364 hasOpenAccess W3028482364 @default.
- W3028482364 hasPrimaryLocation W30284823641 @default.
- W3028482364 hasRelatedWork W2027696105 @default.
- W3028482364 hasRelatedWork W2066286475 @default.
- W3028482364 hasRelatedWork W2158767758 @default.
- W3028482364 hasRelatedWork W2314882390 @default.
- W3028482364 hasRelatedWork W2561301622 @default.
- W3028482364 hasRelatedWork W2963624527 @default.
- W3028482364 hasRelatedWork W3014679598 @default.
- W3028482364 hasRelatedWork W3123156514 @default.
- W3028482364 hasRelatedWork W3210382897 @default.
- W3028482364 hasRelatedWork W2189035789 @default.
- W3028482364 hasVolume "12" @default.
- W3028482364 isParatext "false" @default.
- W3028482364 isRetracted "false" @default.