Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028487170> ?p ?o ?g. }
- W3028487170 endingPage "105536" @default.
- W3028487170 startingPage "105536" @default.
- W3028487170 abstract "Abstract Background Intradialytic hypotension (IDH) is commonly occurred and links to higher mortality among patients undergoing hemodialysis (HD). Its early prediction and prevention will dramatically improve the quality of life. However, predicting the occurrence of IDH clinically is not simple. The aims of this study are to develop an intelligent system with capability of predicting blood pressure (BP) during HD, and to further compare different machine learning algorithms for next systolic BP (SBP) prediction. Methods This study presented comprehensive comparisons among linear regression model, least absolute shrinkage and selection operator (LASSO), tree-based ensemble machine learning models (random forest [RF] and extreme gradient boosting [XGBoost]), and support vector regression to predict the BP during HD treatment based on 200 and 48 maintenance HD patients containing a total of 7,180 and 2,065 BP records for the training and test dataset, respectively. Ensemble method also was computed to obtain better predictive performance. We compared the developed models based on R2, root mean square error (RMSE) and mean absolute error (MAE). Results We found that RF (R2=0.95, RMSE=6.64, MAE=4.90) and XGBoost (R2=1.00, RMSE=1.83, MAE=1.29) had comparable predictive performance on the training dataset. However, RF (R2=0.49, RMSE=16.24, MAE=12.14) had more accurate than XGBoost (R2=0.41, RMSE=17.65, MAE=13.47) on testing dataset. Among these models, the ensemble method (R2=0.50, RMSE=16.01, MAE=11.97) had the best performance on testing dataset for next SBP prediction. Conclusions We compared five machine learning and an ensemble method for next SBP prediction. Among all studied algorithms, th e RF and the ensemble method have the better predictive performance. The prediction models using ensemble method for intradialytic BP profiling may be able to assist the HD staff or physicians in individualized care and prompt intervention for patients’ safety and improve care of HD patients." @default.
- W3028487170 created "2020-05-29" @default.
- W3028487170 creator A5017298793 @default.
- W3028487170 creator A5025904159 @default.
- W3028487170 creator A5039010174 @default.
- W3028487170 creator A5046235861 @default.
- W3028487170 creator A5047229474 @default.
- W3028487170 creator A5059930981 @default.
- W3028487170 creator A5070541835 @default.
- W3028487170 creator A5072642308 @default.
- W3028487170 creator A5081451225 @default.
- W3028487170 date "2020-10-01" @default.
- W3028487170 modified "2023-10-16" @default.
- W3028487170 title "Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method" @default.
- W3028487170 cites W1488863183 @default.
- W3028487170 cites W1909947590 @default.
- W3028487170 cites W1939378014 @default.
- W3028487170 cites W1958566319 @default.
- W3028487170 cites W1985408757 @default.
- W3028487170 cites W1986459953 @default.
- W3028487170 cites W1989186053 @default.
- W3028487170 cites W1998806990 @default.
- W3028487170 cites W2007871875 @default.
- W3028487170 cites W2022608799 @default.
- W3028487170 cites W2034437771 @default.
- W3028487170 cites W2036672713 @default.
- W3028487170 cites W2039601755 @default.
- W3028487170 cites W2040777756 @default.
- W3028487170 cites W2042689611 @default.
- W3028487170 cites W2044150346 @default.
- W3028487170 cites W2047357551 @default.
- W3028487170 cites W2049937445 @default.
- W3028487170 cites W2113138857 @default.
- W3028487170 cites W2129860745 @default.
- W3028487170 cites W2142412939 @default.
- W3028487170 cites W2161923453 @default.
- W3028487170 cites W2163899013 @default.
- W3028487170 cites W2179775398 @default.
- W3028487170 cites W2263685477 @default.
- W3028487170 cites W2513034959 @default.
- W3028487170 cites W2729946825 @default.
- W3028487170 cites W2734034680 @default.
- W3028487170 cites W2911964244 @default.
- W3028487170 cites W2917373968 @default.
- W3028487170 cites W2996002664 @default.
- W3028487170 cites W4231509610 @default.
- W3028487170 cites W4254446807 @default.
- W3028487170 doi "https://doi.org/10.1016/j.cmpb.2020.105536" @default.
- W3028487170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32485511" @default.
- W3028487170 hasPublicationYear "2020" @default.
- W3028487170 type Work @default.
- W3028487170 sameAs 3028487170 @default.
- W3028487170 citedByCount "54" @default.
- W3028487170 countsByYear W30284871702021 @default.
- W3028487170 countsByYear W30284871702022 @default.
- W3028487170 countsByYear W30284871702023 @default.
- W3028487170 crossrefType "journal-article" @default.
- W3028487170 hasAuthorship W3028487170A5017298793 @default.
- W3028487170 hasAuthorship W3028487170A5025904159 @default.
- W3028487170 hasAuthorship W3028487170A5039010174 @default.
- W3028487170 hasAuthorship W3028487170A5046235861 @default.
- W3028487170 hasAuthorship W3028487170A5047229474 @default.
- W3028487170 hasAuthorship W3028487170A5059930981 @default.
- W3028487170 hasAuthorship W3028487170A5070541835 @default.
- W3028487170 hasAuthorship W3028487170A5072642308 @default.
- W3028487170 hasAuthorship W3028487170A5081451225 @default.
- W3028487170 hasConcept C105795698 @default.
- W3028487170 hasConcept C12267149 @default.
- W3028487170 hasConcept C126322002 @default.
- W3028487170 hasConcept C136764020 @default.
- W3028487170 hasConcept C152877465 @default.
- W3028487170 hasConcept C154945302 @default.
- W3028487170 hasConcept C169258074 @default.
- W3028487170 hasConcept C2778063415 @default.
- W3028487170 hasConcept C33923547 @default.
- W3028487170 hasConcept C37616216 @default.
- W3028487170 hasConcept C41008148 @default.
- W3028487170 hasConcept C48921125 @default.
- W3028487170 hasConcept C71924100 @default.
- W3028487170 hasConcept C83546350 @default.
- W3028487170 hasConcept C84393581 @default.
- W3028487170 hasConceptScore W3028487170C105795698 @default.
- W3028487170 hasConceptScore W3028487170C12267149 @default.
- W3028487170 hasConceptScore W3028487170C126322002 @default.
- W3028487170 hasConceptScore W3028487170C136764020 @default.
- W3028487170 hasConceptScore W3028487170C152877465 @default.
- W3028487170 hasConceptScore W3028487170C154945302 @default.
- W3028487170 hasConceptScore W3028487170C169258074 @default.
- W3028487170 hasConceptScore W3028487170C2778063415 @default.
- W3028487170 hasConceptScore W3028487170C33923547 @default.
- W3028487170 hasConceptScore W3028487170C37616216 @default.
- W3028487170 hasConceptScore W3028487170C41008148 @default.
- W3028487170 hasConceptScore W3028487170C48921125 @default.
- W3028487170 hasConceptScore W3028487170C71924100 @default.
- W3028487170 hasConceptScore W3028487170C83546350 @default.
- W3028487170 hasConceptScore W3028487170C84393581 @default.
- W3028487170 hasFunder F4320322811 @default.
- W3028487170 hasLocation W30284871701 @default.