Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028495429> ?p ?o ?g. }
- W3028495429 endingPage "107965" @default.
- W3028495429 startingPage "107965" @default.
- W3028495429 abstract "Abstract The methods based on traditional pattern recognition and deep learning have been successfully applied in gearbox intelligent diagnosis. However, traditional pattern recognition methods cannot directly classify feature tensors of multi-source signals, and deep learning networks hardly handle the classification of small samples. Therefore, for the gearbox intelligent diagnosis with multi-source signals, a novel tensor classifier called kernel flexible and displaceable convex hull based tensor machine (KFDCH-TM) is proposed. In KFDCH-TM, the kernel flexible and displaceable convex hull of tensor samples in tensor feature space is defined firstly. Then, an optimal separating hyper-plane between two kernel flexible and displaceable convex hulls is constructed. Meanwhile, feature tensors extracted from multi-source signals through wavelet packet transform (WPT) are used to diagnose gearbox fault by KFDCH-TM. The results of two cases demonstrate that KFDCH-TM can effectively identify gearbox fault with multi-source signals and has better robustness." @default.
- W3028495429 created "2020-05-29" @default.
- W3028495429 creator A5006189098 @default.
- W3028495429 creator A5007091769 @default.
- W3028495429 creator A5009685223 @default.
- W3028495429 creator A5016024688 @default.
- W3028495429 creator A5052658396 @default.
- W3028495429 date "2020-10-01" @default.
- W3028495429 modified "2023-10-16" @default.
- W3028495429 title "Kernel flexible and displaceable convex hull based tensor machine for gearbox fault intelligent diagnosis with multi-source signals" @default.
- W3028495429 cites W1150061261 @default.
- W3028495429 cites W2011256616 @default.
- W3028495429 cites W2060823065 @default.
- W3028495429 cites W2736225434 @default.
- W3028495429 cites W2740019636 @default.
- W3028495429 cites W2791827527 @default.
- W3028495429 cites W2801961186 @default.
- W3028495429 cites W2885073745 @default.
- W3028495429 cites W2889863053 @default.
- W3028495429 cites W2893076595 @default.
- W3028495429 cites W2899360057 @default.
- W3028495429 cites W2902497325 @default.
- W3028495429 cites W2906256948 @default.
- W3028495429 cites W2917014261 @default.
- W3028495429 cites W2944921051 @default.
- W3028495429 cites W2945468955 @default.
- W3028495429 cites W2950150695 @default.
- W3028495429 cites W2953260284 @default.
- W3028495429 cites W2961876792 @default.
- W3028495429 cites W2965081040 @default.
- W3028495429 cites W2968409655 @default.
- W3028495429 cites W2969339101 @default.
- W3028495429 cites W2971479067 @default.
- W3028495429 cites W2971801691 @default.
- W3028495429 cites W2972103974 @default.
- W3028495429 cites W2984087557 @default.
- W3028495429 cites W2986996311 @default.
- W3028495429 cites W2988299412 @default.
- W3028495429 cites W2990122260 @default.
- W3028495429 cites W2990273315 @default.
- W3028495429 cites W2995758361 @default.
- W3028495429 cites W2997783171 @default.
- W3028495429 cites W2999516673 @default.
- W3028495429 cites W3010850496 @default.
- W3028495429 doi "https://doi.org/10.1016/j.measurement.2020.107965" @default.
- W3028495429 hasPublicationYear "2020" @default.
- W3028495429 type Work @default.
- W3028495429 sameAs 3028495429 @default.
- W3028495429 citedByCount "13" @default.
- W3028495429 countsByYear W30284954292021 @default.
- W3028495429 countsByYear W30284954292022 @default.
- W3028495429 countsByYear W30284954292023 @default.
- W3028495429 crossrefType "journal-article" @default.
- W3028495429 hasAuthorship W3028495429A5006189098 @default.
- W3028495429 hasAuthorship W3028495429A5007091769 @default.
- W3028495429 hasAuthorship W3028495429A5009685223 @default.
- W3028495429 hasAuthorship W3028495429A5016024688 @default.
- W3028495429 hasAuthorship W3028495429A5052658396 @default.
- W3028495429 hasConcept C112680207 @default.
- W3028495429 hasConcept C11413529 @default.
- W3028495429 hasConcept C127313418 @default.
- W3028495429 hasConcept C127413603 @default.
- W3028495429 hasConcept C155281189 @default.
- W3028495429 hasConcept C159985019 @default.
- W3028495429 hasConcept C165205528 @default.
- W3028495429 hasConcept C175551986 @default.
- W3028495429 hasConcept C192562407 @default.
- W3028495429 hasConcept C202444582 @default.
- W3028495429 hasConcept C206194317 @default.
- W3028495429 hasConcept C2524010 @default.
- W3028495429 hasConcept C33923547 @default.
- W3028495429 hasConcept C37423430 @default.
- W3028495429 hasConcept C41008148 @default.
- W3028495429 hasConcept C66938386 @default.
- W3028495429 hasConcept C74193536 @default.
- W3028495429 hasConceptScore W3028495429C112680207 @default.
- W3028495429 hasConceptScore W3028495429C11413529 @default.
- W3028495429 hasConceptScore W3028495429C127313418 @default.
- W3028495429 hasConceptScore W3028495429C127413603 @default.
- W3028495429 hasConceptScore W3028495429C155281189 @default.
- W3028495429 hasConceptScore W3028495429C159985019 @default.
- W3028495429 hasConceptScore W3028495429C165205528 @default.
- W3028495429 hasConceptScore W3028495429C175551986 @default.
- W3028495429 hasConceptScore W3028495429C192562407 @default.
- W3028495429 hasConceptScore W3028495429C202444582 @default.
- W3028495429 hasConceptScore W3028495429C206194317 @default.
- W3028495429 hasConceptScore W3028495429C2524010 @default.
- W3028495429 hasConceptScore W3028495429C33923547 @default.
- W3028495429 hasConceptScore W3028495429C37423430 @default.
- W3028495429 hasConceptScore W3028495429C41008148 @default.
- W3028495429 hasConceptScore W3028495429C66938386 @default.
- W3028495429 hasConceptScore W3028495429C74193536 @default.
- W3028495429 hasFunder F4320321001 @default.
- W3028495429 hasFunder F4320335787 @default.
- W3028495429 hasLocation W30284954291 @default.
- W3028495429 hasOpenAccess W3028495429 @default.
- W3028495429 hasPrimaryLocation W30284954291 @default.
- W3028495429 hasRelatedWork W1823264389 @default.