Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028547892> ?p ?o ?g. }
- W3028547892 endingPage "144" @default.
- W3028547892 startingPage "131" @default.
- W3028547892 abstract "Myotonic dystrophy type 1 is the most common type of adult-onset muscular dystrophy. This is an autosomal dominant disorder and caused by the expansion of the CTG repeat in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Messenger RNAs containing these expanded repeats form aggregates as nuclear RNA foci. Then, RNA binding proteins, including muscleblind-like 1, are sequestered to the RNA foci, leading to systemic abnormal RNA splicing. In this study, we used CRISPR-Cas9 genome editing to excise this CTG repeat. Dual cleavage at the 5′ and 3′ regions of the repeat using a conventional Cas9 nuclease and a double nicking with Cas9 nickase successfully excised the CTG repeat. Subsequently, the formation of the RNA foci was markedly reduced in patient-derived fibroblasts. However, contrary to expectations, a considerable amount of off-target digestions and on-target genomic rearrangements were observed using high-throughput genome-wide translocation sequencing. Finally, the suppression of DMPK transcripts using CRISPR interference significantly decreased the intensity of RNA foci. Our results indicate that close attention should be paid to the unintended mutations when double-strand breaks are generated by CRISPR-Cas9 for therapeutic purposes. Alternative approaches independent of double-strand breaks, including CRISPR interference, may be considered. Myotonic dystrophy type 1 is the most common type of adult-onset muscular dystrophy. This is an autosomal dominant disorder and caused by the expansion of the CTG repeat in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Messenger RNAs containing these expanded repeats form aggregates as nuclear RNA foci. Then, RNA binding proteins, including muscleblind-like 1, are sequestered to the RNA foci, leading to systemic abnormal RNA splicing. In this study, we used CRISPR-Cas9 genome editing to excise this CTG repeat. Dual cleavage at the 5′ and 3′ regions of the repeat using a conventional Cas9 nuclease and a double nicking with Cas9 nickase successfully excised the CTG repeat. Subsequently, the formation of the RNA foci was markedly reduced in patient-derived fibroblasts. However, contrary to expectations, a considerable amount of off-target digestions and on-target genomic rearrangements were observed using high-throughput genome-wide translocation sequencing. Finally, the suppression of DMPK transcripts using CRISPR interference significantly decreased the intensity of RNA foci. Our results indicate that close attention should be paid to the unintended mutations when double-strand breaks are generated by CRISPR-Cas9 for therapeutic purposes. Alternative approaches independent of double-strand breaks, including CRISPR interference, may be considered." @default.
- W3028547892 created "2020-05-29" @default.
- W3028547892 creator A5001838764 @default.
- W3028547892 creator A5010523107 @default.
- W3028547892 creator A5015703692 @default.
- W3028547892 creator A5026709124 @default.
- W3028547892 creator A5055590437 @default.
- W3028547892 creator A5057635419 @default.
- W3028547892 creator A5061673989 @default.
- W3028547892 creator A5071564679 @default.
- W3028547892 creator A5073866709 @default.
- W3028547892 creator A5076214241 @default.
- W3028547892 creator A5076268268 @default.
- W3028547892 creator A5082261400 @default.
- W3028547892 date "2020-09-01" @default.
- W3028547892 modified "2023-10-16" @default.
- W3028547892 title "Unexpected Mutations by CRISPR-Cas9 CTG Repeat Excision in Myotonic Dystrophy and Use of CRISPR Interference as an Alternative Approach" @default.
- W3028547892 cites W1537896138 @default.
- W3028547892 cites W1555409852 @default.
- W3028547892 cites W1783508367 @default.
- W3028547892 cites W1912177776 @default.
- W3028547892 cites W1968799186 @default.
- W3028547892 cites W1971507786 @default.
- W3028547892 cites W1975664052 @default.
- W3028547892 cites W1977709885 @default.
- W3028547892 cites W1978094899 @default.
- W3028547892 cites W1987975381 @default.
- W3028547892 cites W1997281938 @default.
- W3028547892 cites W2003171404 @default.
- W3028547892 cites W2013247841 @default.
- W3028547892 cites W2020685420 @default.
- W3028547892 cites W2021341670 @default.
- W3028547892 cites W2025855695 @default.
- W3028547892 cites W2030858260 @default.
- W3028547892 cites W2048359227 @default.
- W3028547892 cites W2063936397 @default.
- W3028547892 cites W2064654376 @default.
- W3028547892 cites W2064815984 @default.
- W3028547892 cites W207415698 @default.
- W3028547892 cites W2081280332 @default.
- W3028547892 cites W2085146326 @default.
- W3028547892 cites W2094655231 @default.
- W3028547892 cites W2101749257 @default.
- W3028547892 cites W2103609218 @default.
- W3028547892 cites W2113918626 @default.
- W3028547892 cites W2131447660 @default.
- W3028547892 cites W2137371531 @default.
- W3028547892 cites W2140188816 @default.
- W3028547892 cites W2140916263 @default.
- W3028547892 cites W2141124826 @default.
- W3028547892 cites W2143726811 @default.
- W3028547892 cites W2159985046 @default.
- W3028547892 cites W2160051211 @default.
- W3028547892 cites W2161340431 @default.
- W3028547892 cites W2163445749 @default.
- W3028547892 cites W2167380395 @default.
- W3028547892 cites W2167616277 @default.
- W3028547892 cites W2171373304 @default.
- W3028547892 cites W2173737475 @default.
- W3028547892 cites W2191269878 @default.
- W3028547892 cites W2335547104 @default.
- W3028547892 cites W2395144709 @default.
- W3028547892 cites W2404545519 @default.
- W3028547892 cites W2461493169 @default.
- W3028547892 cites W2509237732 @default.
- W3028547892 cites W2557181747 @default.
- W3028547892 cites W2563585356 @default.
- W3028547892 cites W2568585891 @default.
- W3028547892 cites W2588309240 @default.
- W3028547892 cites W2616392786 @default.
- W3028547892 cites W2618806491 @default.
- W3028547892 cites W2742741050 @default.
- W3028547892 cites W2750304043 @default.
- W3028547892 cites W2751464430 @default.
- W3028547892 cites W2759402071 @default.
- W3028547892 cites W2762666183 @default.
- W3028547892 cites W2788997515 @default.
- W3028547892 cites W2791395831 @default.
- W3028547892 cites W2791876458 @default.
- W3028547892 cites W2803895514 @default.
- W3028547892 cites W2806820493 @default.
- W3028547892 cites W2807198924 @default.
- W3028547892 cites W2810979552 @default.
- W3028547892 cites W2883697525 @default.
- W3028547892 cites W2885661865 @default.
- W3028547892 cites W2891962863 @default.
- W3028547892 cites W2903427289 @default.
- W3028547892 cites W2914658811 @default.
- W3028547892 cites W2945177467 @default.
- W3028547892 cites W2948440285 @default.
- W3028547892 cites W3010666069 @default.
- W3028547892 cites W3015141182 @default.
- W3028547892 doi "https://doi.org/10.1016/j.omtm.2020.05.024" @default.
- W3028547892 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7321784" @default.
- W3028547892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32637445" @default.
- W3028547892 hasPublicationYear "2020" @default.
- W3028547892 type Work @default.
- W3028547892 sameAs 3028547892 @default.