Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028569532> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3028569532 abstract "ndonesia's soybean needs increase from year to year. But according to data from the Badan Pusat Statistik (BPS) the amount of national soybean productivity is still low, so the fulfillment of soybean needs is done by importing soybeans from several countries such as China, Ukraine, Canada, Malaysia, and the United States. Low soybean productivity is caused by several factors. One of the causes is disease. This study aims to create a soybean disease detection by applying Learning Vector Quantization 2 (LVQ2) neural network algorithm(ANN) and Stepwise Regression Algorithm attribute selection. The attribute variables used consisted of 35 symptoms of the disease in soybean crop data. The data used in this study is a soybean dataset taken from University of California Irvine Machine Learning Repository as much as 200 data. The distribution of training data and test data is done by the k-fold cross validation method with a value of k = 10. The result of the study shows that the best paramater use in lVQ2. The results showed that the best parameters in LVQ2 is learning rate (α) value of 0.3; epsilon 0.04; and maximum epoch 100. While the best attribute selection uses the parameter p to enter and p to remove of 0.15 which produces 17 selected attributes such as date, plant stand, precipitation, leaves, leaf spot halo, leaf spot margins, leafspot size, leaf mildew, stem canker, stem fungi, external decay, fruit pods, fruit spots, seeds, mold growth, seed discolor, roots. The best results in this study resulted in an accuracy of 90.5%, 9.5% error rate, 90.5% sensitivity, and 98.94% specificity" @default.
- W3028569532 created "2020-05-29" @default.
- W3028569532 creator A5006417295 @default.
- W3028569532 creator A5007547526 @default.
- W3028569532 creator A5012630776 @default.
- W3028569532 creator A5023181000 @default.
- W3028569532 date "2020-05-20" @default.
- W3028569532 modified "2023-10-18" @default.
- W3028569532 title "Soybean Disease Detection with Feature Selection Using Stepwise Regression Algorithm: LVQ vs LVQ2" @default.
- W3028569532 cites W1999129321 @default.
- W3028569532 cites W2015764712 @default.
- W3028569532 cites W2597927447 @default.
- W3028569532 cites W2622247434 @default.
- W3028569532 cites W2786214972 @default.
- W3028569532 cites W2793299361 @default.
- W3028569532 cites W2805254680 @default.
- W3028569532 cites W2947315235 @default.
- W3028569532 cites W85343208 @default.
- W3028569532 cites W3166095749 @default.
- W3028569532 doi "https://doi.org/10.22219/kinetik.v5i2.919" @default.
- W3028569532 hasPublicationYear "2020" @default.
- W3028569532 type Work @default.
- W3028569532 sameAs 3028569532 @default.
- W3028569532 citedByCount "0" @default.
- W3028569532 crossrefType "journal-article" @default.
- W3028569532 hasAuthorship W3028569532A5006417295 @default.
- W3028569532 hasAuthorship W3028569532A5007547526 @default.
- W3028569532 hasAuthorship W3028569532A5012630776 @default.
- W3028569532 hasAuthorship W3028569532A5023181000 @default.
- W3028569532 hasBestOaLocation W30285695321 @default.
- W3028569532 hasConcept C105795698 @default.
- W3028569532 hasConcept C11413529 @default.
- W3028569532 hasConcept C119857082 @default.
- W3028569532 hasConcept C144027150 @default.
- W3028569532 hasConcept C148483581 @default.
- W3028569532 hasConcept C170964787 @default.
- W3028569532 hasConcept C199833920 @default.
- W3028569532 hasConcept C2777247689 @default.
- W3028569532 hasConcept C2779669290 @default.
- W3028569532 hasConcept C33923547 @default.
- W3028569532 hasConcept C40567965 @default.
- W3028569532 hasConcept C41008148 @default.
- W3028569532 hasConcept C6557445 @default.
- W3028569532 hasConcept C86803240 @default.
- W3028569532 hasConceptScore W3028569532C105795698 @default.
- W3028569532 hasConceptScore W3028569532C11413529 @default.
- W3028569532 hasConceptScore W3028569532C119857082 @default.
- W3028569532 hasConceptScore W3028569532C144027150 @default.
- W3028569532 hasConceptScore W3028569532C148483581 @default.
- W3028569532 hasConceptScore W3028569532C170964787 @default.
- W3028569532 hasConceptScore W3028569532C199833920 @default.
- W3028569532 hasConceptScore W3028569532C2777247689 @default.
- W3028569532 hasConceptScore W3028569532C2779669290 @default.
- W3028569532 hasConceptScore W3028569532C33923547 @default.
- W3028569532 hasConceptScore W3028569532C40567965 @default.
- W3028569532 hasConceptScore W3028569532C41008148 @default.
- W3028569532 hasConceptScore W3028569532C6557445 @default.
- W3028569532 hasConceptScore W3028569532C86803240 @default.
- W3028569532 hasLocation W30285695321 @default.
- W3028569532 hasOpenAccess W3028569532 @default.
- W3028569532 hasPrimaryLocation W30285695321 @default.
- W3028569532 hasRelatedWork W22354473 @default.
- W3028569532 hasRelatedWork W23039671 @default.
- W3028569532 hasRelatedWork W27971500 @default.
- W3028569532 hasRelatedWork W33870844 @default.
- W3028569532 hasRelatedWork W40428458 @default.
- W3028569532 hasRelatedWork W40946682 @default.
- W3028569532 hasRelatedWork W41040369 @default.
- W3028569532 hasRelatedWork W482614 @default.
- W3028569532 hasRelatedWork W8394581 @default.
- W3028569532 hasRelatedWork W19598976 @default.
- W3028569532 isParatext "false" @default.
- W3028569532 isRetracted "false" @default.
- W3028569532 magId "3028569532" @default.
- W3028569532 workType "article" @default.