Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028601837> ?p ?o ?g. }
- W3028601837 endingPage "3356" @default.
- W3028601837 startingPage "3347" @default.
- W3028601837 abstract "Abstract Plasmonic materials have long been exploited for enhanced spectroscopy, integrated nanophotonic circuits, sensing, light harvesting, etc. Damping is the key factor that limits their performance and restricts the development of the field. Optical characterization of single nanoparticle at low temperature is ideal for investigating the damping of plasmons but is usually technically impractical due to the sample vibration from the cryostat and the surface adsorption during the cooling process. In this work, we use a vibration-free cryostat to investigate the temperature-dependent dark-field scattering spectroscopy of a single Au nanowire on top of a Au film. This allows us to extract the contribution of electron-phonon scattering to the damping of plasmons without performing statistics over different target nanoparticles. The results show that the full width at half-maximum of the plasmon resonance increases by an amount of 5.8%, over the temperature range of 5−150 K. Electromagnetic calculations reveal that the temperature-insensitive dissipation channels into photons or surface plasmon polaritons on the Au film contribute up to 64% of the total dissipations at the plasmon resonance. This explains why the reduction of plasmon linewidth seems small at the single-particle level. This study provides a more explicit measurement on the damping process of the single plasmonic nanostructure, which serves as basic knowledge in the applications of nanoplasmonic materials." @default.
- W3028601837 created "2020-06-05" @default.
- W3028601837 creator A5014459662 @default.
- W3028601837 creator A5015171976 @default.
- W3028601837 creator A5027331226 @default.
- W3028601837 creator A5031751800 @default.
- W3028601837 creator A5067357180 @default.
- W3028601837 date "2020-05-23" @default.
- W3028601837 modified "2023-10-01" @default.
- W3028601837 title "Temperature-dependent dark-field scattering of single plasmonic nanocavity" @default.
- W3028601837 cites W1508583549 @default.
- W3028601837 cites W1760052895 @default.
- W3028601837 cites W1784198049 @default.
- W3028601837 cites W1969373528 @default.
- W3028601837 cites W1976851346 @default.
- W3028601837 cites W1978696831 @default.
- W3028601837 cites W1981486609 @default.
- W3028601837 cites W1985323797 @default.
- W3028601837 cites W1986876994 @default.
- W3028601837 cites W2004946672 @default.
- W3028601837 cites W2013068587 @default.
- W3028601837 cites W2014930189 @default.
- W3028601837 cites W2014950254 @default.
- W3028601837 cites W2023314679 @default.
- W3028601837 cites W2027591612 @default.
- W3028601837 cites W2029516783 @default.
- W3028601837 cites W2038164948 @default.
- W3028601837 cites W2042800784 @default.
- W3028601837 cites W2047386154 @default.
- W3028601837 cites W2050993261 @default.
- W3028601837 cites W2055447532 @default.
- W3028601837 cites W2082414685 @default.
- W3028601837 cites W2083926174 @default.
- W3028601837 cites W2087439980 @default.
- W3028601837 cites W2090355000 @default.
- W3028601837 cites W2091962209 @default.
- W3028601837 cites W2094279472 @default.
- W3028601837 cites W2097534788 @default.
- W3028601837 cites W2105958862 @default.
- W3028601837 cites W2109905811 @default.
- W3028601837 cites W2139160852 @default.
- W3028601837 cites W2139516501 @default.
- W3028601837 cites W2151845695 @default.
- W3028601837 cites W2155462488 @default.
- W3028601837 cites W2159244111 @default.
- W3028601837 cites W2206485707 @default.
- W3028601837 cites W2234726130 @default.
- W3028601837 cites W2295828629 @default.
- W3028601837 cites W2314670773 @default.
- W3028601837 cites W2321529128 @default.
- W3028601837 cites W2323849798 @default.
- W3028601837 cites W2418622137 @default.
- W3028601837 cites W2599286232 @default.
- W3028601837 cites W2618375336 @default.
- W3028601837 cites W2785956082 @default.
- W3028601837 cites W2805740130 @default.
- W3028601837 cites W2885685990 @default.
- W3028601837 cites W2886157050 @default.
- W3028601837 cites W2891919452 @default.
- W3028601837 cites W2895818007 @default.
- W3028601837 cites W2903335809 @default.
- W3028601837 cites W2921140263 @default.
- W3028601837 cites W2922101303 @default.
- W3028601837 cites W2969963208 @default.
- W3028601837 doi "https://doi.org/10.1515/nanoph-2020-0076" @default.
- W3028601837 hasPublicationYear "2020" @default.
- W3028601837 type Work @default.
- W3028601837 sameAs 3028601837 @default.
- W3028601837 citedByCount "12" @default.
- W3028601837 countsByYear W30286018372020 @default.
- W3028601837 countsByYear W30286018372021 @default.
- W3028601837 countsByYear W30286018372022 @default.
- W3028601837 countsByYear W30286018372023 @default.
- W3028601837 crossrefType "journal-article" @default.
- W3028601837 hasAuthorship W3028601837A5014459662 @default.
- W3028601837 hasAuthorship W3028601837A5015171976 @default.
- W3028601837 hasAuthorship W3028601837A5027331226 @default.
- W3028601837 hasAuthorship W3028601837A5031751800 @default.
- W3028601837 hasAuthorship W3028601837A5067357180 @default.
- W3028601837 hasBestOaLocation W30286018371 @default.
- W3028601837 hasConcept C106847996 @default.
- W3028601837 hasConcept C110879396 @default.
- W3028601837 hasConcept C120665830 @default.
- W3028601837 hasConcept C121332964 @default.
- W3028601837 hasConcept C130725296 @default.
- W3028601837 hasConcept C136676167 @default.
- W3028601837 hasConcept C150835508 @default.
- W3028601837 hasConcept C155672457 @default.
- W3028601837 hasConcept C171250308 @default.
- W3028601837 hasConcept C191486275 @default.
- W3028601837 hasConcept C192562407 @default.
- W3028601837 hasConcept C26873012 @default.
- W3028601837 hasConcept C27289702 @default.
- W3028601837 hasConcept C49040817 @default.
- W3028601837 hasConcept C54101563 @default.
- W3028601837 hasConcept C74214498 @default.
- W3028601837 hasConcept C89106999 @default.
- W3028601837 hasConceptScore W3028601837C106847996 @default.