Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028604145> ?p ?o ?g. }
- W3028604145 endingPage "118080" @default.
- W3028604145 startingPage "118080" @default.
- W3028604145 abstract "Advanced diesel combustion, accomplished via a single pulse fuel injection and high levels of exhaust gas recirculation (referred to as “PCCI”, partially-premixed charge compression ignition), is shown to be a path to reduce oxides of nitrogen and particulate matter simultaneously. This is well established in the literature. Less established is the extent to which such dilute combustion processes influence soot formation and affect soot that is emitted from diesel engines under such combustion modes. This work focuses on characterization of the nanostructure and oxidative reactivity of soot generated by a light-duty turbodiesel engine operating under a PCCI combustion mode, a dilute, low-temperature combustion process. Previous work on a type of PCCI combustion, referred to as high-efficiency clean combustion (HECC), showed soot samples having a fullerenic nanostructure, characterized by high levels of tortuosity of the fringe layers as seen in transmission electron micrograph images and as quantified using an image processing algorithm. Thermogravimetric analysis of the HECC mode soot samples showed that they displayed higher rates of oxidation than soot samples from a conventional diesel combustion mode. The present work returns to PCCI combustion, considering the timing of the main fuel injection, and the effects of operating on fuels rich in n-alkanes, particularly a fuel produced from a low temperature Fischer-Tropsch process (LTFT) and a renewable diesel fuel (RD) produced via hydrodeoxygenation of a plant oil. PCCI combustion conditions yield soot that shows higher reactivity compared to soot from the conventional combustion mode regardless of fuel type. LTFT and RD fuels produce soots with lower reactivity compared to ULSD. Soots produced from PCCI combustion have higher surface oxygen concentration and higher proportion of amorphous carbon. In addition, TEM images show that PCCI soots from all three fuels have smaller primary particle and particle aggregate sizes, and smaller graphene layers. These properties explain the higher reactivity of soot from PCCI combustion. The less reactive soots, which are produced from LTFT and RD fuel under conventional combustion, show internal burning during oxidation. However, soots with higher reactivity which are produced from late injection PCCI combustion and ULSD show shrinking core oxidation, likely because of their overall amorphous structure." @default.
- W3028604145 created "2020-06-05" @default.
- W3028604145 creator A5000210204 @default.
- W3028604145 creator A5016629338 @default.
- W3028604145 creator A5074922136 @default.
- W3028604145 date "2020-09-01" @default.
- W3028604145 modified "2023-09-25" @default.
- W3028604145 title "Impacts of advanced diesel combustion operation and fuel formulation on soot nanostructure and reactivity" @default.
- W3028604145 cites W142643444 @default.
- W3028604145 cites W1483239760 @default.
- W3028604145 cites W1510769492 @default.
- W3028604145 cites W1539790580 @default.
- W3028604145 cites W1572368681 @default.
- W3028604145 cites W1782954364 @default.
- W3028604145 cites W1964321439 @default.
- W3028604145 cites W1967014998 @default.
- W3028604145 cites W1969473805 @default.
- W3028604145 cites W1970005434 @default.
- W3028604145 cites W1970772333 @default.
- W3028604145 cites W1974293688 @default.
- W3028604145 cites W1976004665 @default.
- W3028604145 cites W1998668456 @default.
- W3028604145 cites W2006007232 @default.
- W3028604145 cites W2007637154 @default.
- W3028604145 cites W2009210765 @default.
- W3028604145 cites W2014123537 @default.
- W3028604145 cites W2019121389 @default.
- W3028604145 cites W2025271879 @default.
- W3028604145 cites W2028068879 @default.
- W3028604145 cites W2032434433 @default.
- W3028604145 cites W2042041456 @default.
- W3028604145 cites W2042331312 @default.
- W3028604145 cites W2049856227 @default.
- W3028604145 cites W2052799939 @default.
- W3028604145 cites W2057938114 @default.
- W3028604145 cites W2060552570 @default.
- W3028604145 cites W2061659221 @default.
- W3028604145 cites W2064201579 @default.
- W3028604145 cites W2066865294 @default.
- W3028604145 cites W2066931959 @default.
- W3028604145 cites W2075951318 @default.
- W3028604145 cites W2076769696 @default.
- W3028604145 cites W2081961329 @default.
- W3028604145 cites W2083594381 @default.
- W3028604145 cites W2084843168 @default.
- W3028604145 cites W2094487133 @default.
- W3028604145 cites W2152484528 @default.
- W3028604145 cites W2235679284 @default.
- W3028604145 cites W2260434775 @default.
- W3028604145 cites W2278120134 @default.
- W3028604145 cites W2314592014 @default.
- W3028604145 cites W2325510312 @default.
- W3028604145 cites W2330847727 @default.
- W3028604145 cites W2337570272 @default.
- W3028604145 cites W2519092076 @default.
- W3028604145 doi "https://doi.org/10.1016/j.fuel.2020.118080" @default.
- W3028604145 hasPublicationYear "2020" @default.
- W3028604145 type Work @default.
- W3028604145 sameAs 3028604145 @default.
- W3028604145 citedByCount "14" @default.
- W3028604145 countsByYear W30286041452021 @default.
- W3028604145 countsByYear W30286041452022 @default.
- W3028604145 countsByYear W30286041452023 @default.
- W3028604145 crossrefType "journal-article" @default.
- W3028604145 hasAuthorship W3028604145A5000210204 @default.
- W3028604145 hasAuthorship W3028604145A5016629338 @default.
- W3028604145 hasAuthorship W3028604145A5074922136 @default.
- W3028604145 hasBestOaLocation W30286041451 @default.
- W3028604145 hasConcept C103206924 @default.
- W3028604145 hasConcept C105923489 @default.
- W3028604145 hasConcept C108285982 @default.
- W3028604145 hasConcept C121332964 @default.
- W3028604145 hasConcept C127413603 @default.
- W3028604145 hasConcept C138171918 @default.
- W3028604145 hasConcept C159063594 @default.
- W3028604145 hasConcept C161790260 @default.
- W3028604145 hasConcept C168255717 @default.
- W3028604145 hasConcept C171146098 @default.
- W3028604145 hasConcept C178790620 @default.
- W3028604145 hasConcept C185592680 @default.
- W3028604145 hasConcept C192562407 @default.
- W3028604145 hasConcept C24245907 @default.
- W3028604145 hasConcept C2775925408 @default.
- W3028604145 hasConcept C2780804531 @default.
- W3028604145 hasConcept C3432839 @default.
- W3028604145 hasConcept C42360764 @default.
- W3028604145 hasConcept C97355855 @default.
- W3028604145 hasConceptScore W3028604145C103206924 @default.
- W3028604145 hasConceptScore W3028604145C105923489 @default.
- W3028604145 hasConceptScore W3028604145C108285982 @default.
- W3028604145 hasConceptScore W3028604145C121332964 @default.
- W3028604145 hasConceptScore W3028604145C127413603 @default.
- W3028604145 hasConceptScore W3028604145C138171918 @default.
- W3028604145 hasConceptScore W3028604145C159063594 @default.
- W3028604145 hasConceptScore W3028604145C161790260 @default.
- W3028604145 hasConceptScore W3028604145C168255717 @default.
- W3028604145 hasConceptScore W3028604145C171146098 @default.
- W3028604145 hasConceptScore W3028604145C178790620 @default.