Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028752302> ?p ?o ?g. }
- W3028752302 endingPage "99109" @default.
- W3028752302 startingPage "99098" @default.
- W3028752302 abstract "One of the missions of fifth generation (5G) wireless networks is to provide massive connectivity of the fast growing number of Internet of Things (IoT) devices. To satisfy this mission, non-orthogonal multiple access (NOMA) has been recognized as a promising solution for 5G networks to significantly improve the network capacity. Considered as a booster of IoT devices, and in parallel with the development of NOMA techniques, multi-access edge computing (MEC) is also becoming one of the key emerging technologies for 5G networks. In this paper, with an objective of maximizing the computation rate of an MEC system, we investigate the computation offloading and subcarrier allocation problem in Multi-carrier (MC) NOMA based MEC systems and address it using Deep Reinforcement Learning for Online Computation Offloading (DRLOCO-MNM) algorithm. In particular, the DRLOCO-MNM helps each of the user equipments (UEs) decides between local and remote computation modes, and also assigns the appropriate subcarrier to the UEs in the case of remote computation mode. The DRLOCO-MNM algorithm is especially advantageous over the other machine learning techniques applied on NOMA because it does not require labeled data for training or a complete definition of the channel environment. The DRLOCO-MNM also does avoid the complexity found in many optimization algorithms used to solve channel allocation in existing NOMA related studies. Numerical simulations and comparison with other algorithms show that our proposed module and its algorithm considerably improve the computation rates of MEC systems." @default.
- W3028752302 created "2020-06-05" @default.
- W3028752302 creator A5018836656 @default.
- W3028752302 creator A5062525719 @default.
- W3028752302 creator A5085192467 @default.
- W3028752302 date "2020-01-01" @default.
- W3028752302 modified "2023-09-30" @default.
- W3028752302 title "Online Computation Offloading in NOMA-Based Multi-Access Edge Computing: A Deep Reinforcement Learning Approach" @default.
- W3028752302 cites W2054692642 @default.
- W3028752302 cites W2145339207 @default.
- W3028752302 cites W2482293012 @default.
- W3028752302 cites W2515756451 @default.
- W3028752302 cites W2564810971 @default.
- W3028752302 cites W2568772110 @default.
- W3028752302 cites W2624989916 @default.
- W3028752302 cites W2730732134 @default.
- W3028752302 cites W2766476475 @default.
- W3028752302 cites W2771384842 @default.
- W3028752302 cites W2777180355 @default.
- W3028752302 cites W2800755725 @default.
- W3028752302 cites W2802164917 @default.
- W3028752302 cites W2802495557 @default.
- W3028752302 cites W2808381205 @default.
- W3028752302 cites W2808769300 @default.
- W3028752302 cites W2901141046 @default.
- W3028752302 cites W2910603649 @default.
- W3028752302 cites W2912496986 @default.
- W3028752302 cites W2915609635 @default.
- W3028752302 cites W2957361050 @default.
- W3028752302 cites W2963336322 @default.
- W3028752302 cites W2964052915 @default.
- W3028752302 cites W2964054168 @default.
- W3028752302 cites W2964077788 @default.
- W3028752302 cites W2966171167 @default.
- W3028752302 cites W2967006416 @default.
- W3028752302 cites W2968018638 @default.
- W3028752302 cites W2968052242 @default.
- W3028752302 cites W2968520662 @default.
- W3028752302 cites W2969965655 @default.
- W3028752302 cites W2980575120 @default.
- W3028752302 cites W2981138228 @default.
- W3028752302 cites W2982531427 @default.
- W3028752302 cites W2991268436 @default.
- W3028752302 cites W2995997939 @default.
- W3028752302 cites W3005759659 @default.
- W3028752302 cites W3100366369 @default.
- W3028752302 cites W3102167156 @default.
- W3028752302 cites W3106445841 @default.
- W3028752302 cites W3124943657 @default.
- W3028752302 cites W2957660883 @default.
- W3028752302 doi "https://doi.org/10.1109/access.2020.2997925" @default.
- W3028752302 hasPublicationYear "2020" @default.
- W3028752302 type Work @default.
- W3028752302 sameAs 3028752302 @default.
- W3028752302 citedByCount "31" @default.
- W3028752302 countsByYear W30287523022020 @default.
- W3028752302 countsByYear W30287523022021 @default.
- W3028752302 countsByYear W30287523022022 @default.
- W3028752302 countsByYear W30287523022023 @default.
- W3028752302 crossrefType "journal-article" @default.
- W3028752302 hasAuthorship W3028752302A5018836656 @default.
- W3028752302 hasAuthorship W3028752302A5062525719 @default.
- W3028752302 hasAuthorship W3028752302A5085192467 @default.
- W3028752302 hasBestOaLocation W30287523021 @default.
- W3028752302 hasConcept C108037233 @default.
- W3028752302 hasConcept C111919701 @default.
- W3028752302 hasConcept C11413529 @default.
- W3028752302 hasConcept C120314980 @default.
- W3028752302 hasConcept C127162648 @default.
- W3028752302 hasConcept C138236772 @default.
- W3028752302 hasConcept C138660444 @default.
- W3028752302 hasConcept C154945302 @default.
- W3028752302 hasConcept C162307627 @default.
- W3028752302 hasConcept C198329298 @default.
- W3028752302 hasConcept C2775918612 @default.
- W3028752302 hasConcept C2776061582 @default.
- W3028752302 hasConcept C2778456923 @default.
- W3028752302 hasConcept C2781041963 @default.
- W3028752302 hasConcept C31258907 @default.
- W3028752302 hasConcept C40409654 @default.
- W3028752302 hasConcept C41008148 @default.
- W3028752302 hasConcept C45374587 @default.
- W3028752302 hasConcept C555944384 @default.
- W3028752302 hasConcept C76155785 @default.
- W3028752302 hasConcept C79974875 @default.
- W3028752302 hasConcept C93996380 @default.
- W3028752302 hasConcept C97541855 @default.
- W3028752302 hasConceptScore W3028752302C108037233 @default.
- W3028752302 hasConceptScore W3028752302C111919701 @default.
- W3028752302 hasConceptScore W3028752302C11413529 @default.
- W3028752302 hasConceptScore W3028752302C120314980 @default.
- W3028752302 hasConceptScore W3028752302C127162648 @default.
- W3028752302 hasConceptScore W3028752302C138236772 @default.
- W3028752302 hasConceptScore W3028752302C138660444 @default.
- W3028752302 hasConceptScore W3028752302C154945302 @default.
- W3028752302 hasConceptScore W3028752302C162307627 @default.
- W3028752302 hasConceptScore W3028752302C198329298 @default.
- W3028752302 hasConceptScore W3028752302C2775918612 @default.