Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028767182> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3028767182 endingPage "3706" @default.
- W3028767182 startingPage "3706" @default.
- W3028767182 abstract "Nowadays, smartphones are an essential part of people’s lives and a sign of a contemporary world. Even that smartphones bring numerous facilities, but they form a wide gate into personal and financial information. In recent years, a substantial increasing rate of malicious efforts to attack smartphone vulnerabilities has been noticed. A serious common threat is the ransomware attack, which locks the system or users’ data and demands a ransom for the purpose of decrypting or unlocking them. In this article, a framework based on metaheuristic and machine learning is proposed for the detection of Android ransomware. Raw sequences of the applications API calls and permissions were extracted to capture the ransomware pattern of behaviors and build the detection framework. Then, a hybrid of the Salp Swarm Algorithm (SSA) and Kernel Extreme Learning Machine (KELM) is modeled, where the SSA is used to search for the best subset of features and optimize the KELM hyperparameters. Meanwhile, the KELM algorithm is utilized for the identification and classification of the apps into benign or ransomware. The performance of the proposed (SSA-KELM) exhibits noteworthy advantages based on several evaluation measures, including accuracy, recall, true negative rate, precision, g-mean, and area under the curve of a value of 98%, and a ratio of 2% of false positive rate. In addition, it has a competitive convergence ability. Hence, the proposed SSA-KELM algorithm represents a promising approach for efficient ransomware detection." @default.
- W3028767182 created "2020-06-05" @default.
- W3028767182 creator A5020371301 @default.
- W3028767182 creator A5023882029 @default.
- W3028767182 creator A5041848850 @default.
- W3028767182 creator A5048560390 @default.
- W3028767182 creator A5066838830 @default.
- W3028767182 date "2020-05-27" @default.
- W3028767182 modified "2023-10-17" @default.
- W3028767182 title "Optimizing Extreme Learning Machines Using Chains of Salps for Efficient Android Ransomware Detection" @default.
- W3028767182 cites W2000621750 @default.
- W3028767182 cites W2026131661 @default.
- W3028767182 cites W2040884411 @default.
- W3028767182 cites W2133990480 @default.
- W3028767182 cites W2347019181 @default.
- W3028767182 cites W2367504390 @default.
- W3028767182 cites W2738900493 @default.
- W3028767182 cites W2779814706 @default.
- W3028767182 cites W2780577826 @default.
- W3028767182 cites W2783327762 @default.
- W3028767182 cites W2801536506 @default.
- W3028767182 cites W2809619099 @default.
- W3028767182 cites W2883013658 @default.
- W3028767182 cites W2899250423 @default.
- W3028767182 cites W2905412754 @default.
- W3028767182 cites W2906139053 @default.
- W3028767182 cites W2910470804 @default.
- W3028767182 cites W2946415594 @default.
- W3028767182 cites W2950503064 @default.
- W3028767182 cites W2956839102 @default.
- W3028767182 cites W2966789963 @default.
- W3028767182 cites W2996813235 @default.
- W3028767182 cites W3000953536 @default.
- W3028767182 doi "https://doi.org/10.3390/app10113706" @default.
- W3028767182 hasPublicationYear "2020" @default.
- W3028767182 type Work @default.
- W3028767182 sameAs 3028767182 @default.
- W3028767182 citedByCount "25" @default.
- W3028767182 countsByYear W30287671822020 @default.
- W3028767182 countsByYear W30287671822021 @default.
- W3028767182 countsByYear W30287671822022 @default.
- W3028767182 countsByYear W30287671822023 @default.
- W3028767182 crossrefType "journal-article" @default.
- W3028767182 hasAuthorship W3028767182A5020371301 @default.
- W3028767182 hasAuthorship W3028767182A5023882029 @default.
- W3028767182 hasAuthorship W3028767182A5041848850 @default.
- W3028767182 hasAuthorship W3028767182A5048560390 @default.
- W3028767182 hasAuthorship W3028767182A5066838830 @default.
- W3028767182 hasBestOaLocation W30287671821 @default.
- W3028767182 hasConcept C111919701 @default.
- W3028767182 hasConcept C119857082 @default.
- W3028767182 hasConcept C124101348 @default.
- W3028767182 hasConcept C154945302 @default.
- W3028767182 hasConcept C2777667771 @default.
- W3028767182 hasConcept C38652104 @default.
- W3028767182 hasConcept C41008148 @default.
- W3028767182 hasConcept C541664917 @default.
- W3028767182 hasConcept C557433098 @default.
- W3028767182 hasConceptScore W3028767182C111919701 @default.
- W3028767182 hasConceptScore W3028767182C119857082 @default.
- W3028767182 hasConceptScore W3028767182C124101348 @default.
- W3028767182 hasConceptScore W3028767182C154945302 @default.
- W3028767182 hasConceptScore W3028767182C2777667771 @default.
- W3028767182 hasConceptScore W3028767182C38652104 @default.
- W3028767182 hasConceptScore W3028767182C41008148 @default.
- W3028767182 hasConceptScore W3028767182C541664917 @default.
- W3028767182 hasConceptScore W3028767182C557433098 @default.
- W3028767182 hasIssue "11" @default.
- W3028767182 hasLocation W30287671821 @default.
- W3028767182 hasLocation W30287671822 @default.
- W3028767182 hasOpenAccess W3028767182 @default.
- W3028767182 hasPrimaryLocation W30287671821 @default.
- W3028767182 hasRelatedWork W1963923654 @default.
- W3028767182 hasRelatedWork W1974604873 @default.
- W3028767182 hasRelatedWork W2717179875 @default.
- W3028767182 hasRelatedWork W2922354075 @default.
- W3028767182 hasRelatedWork W2964829536 @default.
- W3028767182 hasRelatedWork W3201228709 @default.
- W3028767182 hasRelatedWork W4249118297 @default.
- W3028767182 hasRelatedWork W4253977752 @default.
- W3028767182 hasRelatedWork W4312334973 @default.
- W3028767182 hasRelatedWork W4362497013 @default.
- W3028767182 hasVolume "10" @default.
- W3028767182 isParatext "false" @default.
- W3028767182 isRetracted "false" @default.
- W3028767182 magId "3028767182" @default.
- W3028767182 workType "article" @default.