Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028962016> ?p ?o ?g. }
- W3028962016 endingPage "2915" @default.
- W3028962016 startingPage "2899" @default.
- W3028962016 abstract "Legacy grayscale aerial photographs represent one of the main available sources for studying the past state of the environment and its relationship to the present. However, these photographs lack spectral information thereby hindering their use in current remote sensing approaches that rely on spectral data for characterizing surfaces. This article proposes a conditional generative adversarial network, a deep learning model, to enrich legacy photographs by predicting color channels for an input grayscale image. The technique was used to colorize two orthophotographs (taken in 1956 and 1978) covering the entire Eurométropole de Strasbourg. To assess the model's performances, two strategies were proposed: first, colorized photographs were evaluated with metrics such as peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM); second, random forest classifications were performed to extract land cover classes from grayscale and colorized photographs, respectively. The results revealed strong performances, with PSNR = 25.56 ± 2.20 and SSIM = 0.93 ± 0.06 indicating that the model successfully learned the mapping between grayscale and color photographs over a large territory. Moreover, land cover classifications performed on colorized data showed significant improvements over grayscale photographs, respectively, +6% and +17% for 1956 and 1978. Finally, the plausibility of outputs images was evaluated visually. We conclude that deep learning models are powerful tools for improving radiometric properties of old aerial grayscale photographs and land cover mapping. We also argue that the proposed approach could serve as a basis for further developments aiming to promote the use of aerial photographs archives for landscapes reconstruction." @default.
- W3028962016 created "2020-06-05" @default.
- W3028962016 creator A5002050260 @default.
- W3028962016 creator A5004704817 @default.
- W3028962016 creator A5027711781 @default.
- W3028962016 creator A5079340952 @default.
- W3028962016 date "2020-01-01" @default.
- W3028962016 modified "2023-10-18" @default.
- W3028962016 title "Deep Learning for Automatic Colorization of Legacy Grayscale Aerial Photographs" @default.
- W3028962016 cites W1903029394 @default.
- W3028962016 cites W1966087177 @default.
- W3028962016 cites W1986416281 @default.
- W3028962016 cites W2031666406 @default.
- W3028962016 cites W2044465660 @default.
- W3028962016 cites W2053295068 @default.
- W3028962016 cites W2066416082 @default.
- W3028962016 cites W2070126535 @default.
- W3028962016 cites W2074346721 @default.
- W3028962016 cites W2081839214 @default.
- W3028962016 cites W2120963736 @default.
- W3028962016 cites W2129112648 @default.
- W3028962016 cites W2133665775 @default.
- W3028962016 cites W2155766774 @default.
- W3028962016 cites W2159911025 @default.
- W3028962016 cites W2162831671 @default.
- W3028962016 cites W2163352848 @default.
- W3028962016 cites W2178588767 @default.
- W3028962016 cites W2211456655 @default.
- W3028962016 cites W2294092488 @default.
- W3028962016 cites W2295537950 @default.
- W3028962016 cites W2335901235 @default.
- W3028962016 cites W2461158874 @default.
- W3028962016 cites W2484254510 @default.
- W3028962016 cites W2584890299 @default.
- W3028962016 cites W2608029800 @default.
- W3028962016 cites W2609402060 @default.
- W3028962016 cites W2618530766 @default.
- W3028962016 cites W2734706361 @default.
- W3028962016 cites W2740803760 @default.
- W3028962016 cites W2765811365 @default.
- W3028962016 cites W2774038444 @default.
- W3028962016 cites W2789642882 @default.
- W3028962016 cites W2792186122 @default.
- W3028962016 cites W2794572859 @default.
- W3028962016 cites W2911964244 @default.
- W3028962016 cites W2962793481 @default.
- W3028962016 cites W2963073614 @default.
- W3028962016 cites W2963185411 @default.
- W3028962016 cites W2963470893 @default.
- W3028962016 cites W2963805028 @default.
- W3028962016 cites W2963879752 @default.
- W3028962016 cites W2964043336 @default.
- W3028962016 cites W3000407986 @default.
- W3028962016 cites W4235795445 @default.
- W3028962016 cites W4247941455 @default.
- W3028962016 doi "https://doi.org/10.1109/jstars.2020.2992082" @default.
- W3028962016 hasPublicationYear "2020" @default.
- W3028962016 type Work @default.
- W3028962016 sameAs 3028962016 @default.
- W3028962016 citedByCount "15" @default.
- W3028962016 countsByYear W30289620162020 @default.
- W3028962016 countsByYear W30289620162021 @default.
- W3028962016 countsByYear W30289620162022 @default.
- W3028962016 countsByYear W30289620162023 @default.
- W3028962016 crossrefType "journal-article" @default.
- W3028962016 hasAuthorship W3028962016A5002050260 @default.
- W3028962016 hasAuthorship W3028962016A5004704817 @default.
- W3028962016 hasAuthorship W3028962016A5027711781 @default.
- W3028962016 hasAuthorship W3028962016A5079340952 @default.
- W3028962016 hasBestOaLocation W30289620161 @default.
- W3028962016 hasConcept C103278499 @default.
- W3028962016 hasConcept C108583219 @default.
- W3028962016 hasConcept C115961682 @default.
- W3028962016 hasConcept C127313418 @default.
- W3028962016 hasConcept C127413603 @default.
- W3028962016 hasConcept C133214962 @default.
- W3028962016 hasConcept C147176958 @default.
- W3028962016 hasConcept C153180895 @default.
- W3028962016 hasConcept C154945302 @default.
- W3028962016 hasConcept C160633673 @default.
- W3028962016 hasConcept C205649164 @default.
- W3028962016 hasConcept C2778755073 @default.
- W3028962016 hasConcept C2780428219 @default.
- W3028962016 hasConcept C2780648208 @default.
- W3028962016 hasConcept C31972630 @default.
- W3028962016 hasConcept C41008148 @default.
- W3028962016 hasConcept C4792198 @default.
- W3028962016 hasConcept C58640448 @default.
- W3028962016 hasConcept C62649853 @default.
- W3028962016 hasConcept C78201319 @default.
- W3028962016 hasConcept C78519656 @default.
- W3028962016 hasConcept C99498987 @default.
- W3028962016 hasConceptScore W3028962016C103278499 @default.
- W3028962016 hasConceptScore W3028962016C108583219 @default.
- W3028962016 hasConceptScore W3028962016C115961682 @default.
- W3028962016 hasConceptScore W3028962016C127313418 @default.
- W3028962016 hasConceptScore W3028962016C127413603 @default.
- W3028962016 hasConceptScore W3028962016C133214962 @default.