Matches in SemOpenAlex for { <https://semopenalex.org/work/W3028973493> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3028973493 abstract "Social media is growing trend now a days. Every day millions of user review and rate tourist places on tourism websites. Sentiment analysis can be performed over these reviews which will be helpful to find tourist place popularity. Based on sentiment analysis result, tourist can easily decide tour destination to be visited. In this paper sentiment analysis has been implemented using machine learning approach. The Dataset has been collected from various tourism review websites. Here we have performed comparative study of feature extraction algorithms i.e. CountVectorization, TFIDFVectorization. Along with classification algorithms Naive Bayes (NB), Support Vector Machine (SVM) and Random Forest (RF). Performance of algorithms has been compared using various parameters like accuracy, recall, precision and f1-score. From experiment we found that TFIDFVectorization feature extraction algorithm has improved accuracy of classification algorithm as compare to CountVectorization for given review dataset. In sentiment classification of tourist place reviews TFIDFVectorization+RF has given highest accuracy 86% for a research dataset used." @default.
- W3028973493 created "2020-06-05" @default.
- W3028973493 creator A5042620834 @default.
- W3028973493 creator A5089230620 @default.
- W3028973493 date "2020-02-01" @default.
- W3028973493 modified "2023-10-01" @default.
- W3028973493 title "Tourist Place Reviews Sentiment Classification Using Machine Learning Techniques" @default.
- W3028973493 cites W1572786359 @default.
- W3028973493 cites W2139212933 @default.
- W3028973493 cites W2166706824 @default.
- W3028973493 cites W2245617600 @default.
- W3028973493 cites W2614110591 @default.
- W3028973493 cites W2773726511 @default.
- W3028973493 cites W2810989979 @default.
- W3028973493 cites W2893043530 @default.
- W3028973493 doi "https://doi.org/10.1109/i4tech48345.2020.9102673" @default.
- W3028973493 hasPublicationYear "2020" @default.
- W3028973493 type Work @default.
- W3028973493 sameAs 3028973493 @default.
- W3028973493 citedByCount "5" @default.
- W3028973493 countsByYear W30289734932022 @default.
- W3028973493 countsByYear W30289734932023 @default.
- W3028973493 crossrefType "proceedings-article" @default.
- W3028973493 hasAuthorship W3028973493A5042620834 @default.
- W3028973493 hasAuthorship W3028973493A5089230620 @default.
- W3028973493 hasConcept C110083411 @default.
- W3028973493 hasConcept C119857082 @default.
- W3028973493 hasConcept C12267149 @default.
- W3028973493 hasConcept C124101348 @default.
- W3028973493 hasConcept C136764020 @default.
- W3028973493 hasConcept C154945302 @default.
- W3028973493 hasConcept C15744967 @default.
- W3028973493 hasConcept C166957645 @default.
- W3028973493 hasConcept C169258074 @default.
- W3028973493 hasConcept C18918823 @default.
- W3028973493 hasConcept C205649164 @default.
- W3028973493 hasConcept C2780586970 @default.
- W3028973493 hasConcept C41008148 @default.
- W3028973493 hasConcept C518677369 @default.
- W3028973493 hasConcept C52001869 @default.
- W3028973493 hasConcept C52622490 @default.
- W3028973493 hasConcept C66402592 @default.
- W3028973493 hasConcept C77805123 @default.
- W3028973493 hasConcept C81669768 @default.
- W3028973493 hasConceptScore W3028973493C110083411 @default.
- W3028973493 hasConceptScore W3028973493C119857082 @default.
- W3028973493 hasConceptScore W3028973493C12267149 @default.
- W3028973493 hasConceptScore W3028973493C124101348 @default.
- W3028973493 hasConceptScore W3028973493C136764020 @default.
- W3028973493 hasConceptScore W3028973493C154945302 @default.
- W3028973493 hasConceptScore W3028973493C15744967 @default.
- W3028973493 hasConceptScore W3028973493C166957645 @default.
- W3028973493 hasConceptScore W3028973493C169258074 @default.
- W3028973493 hasConceptScore W3028973493C18918823 @default.
- W3028973493 hasConceptScore W3028973493C205649164 @default.
- W3028973493 hasConceptScore W3028973493C2780586970 @default.
- W3028973493 hasConceptScore W3028973493C41008148 @default.
- W3028973493 hasConceptScore W3028973493C518677369 @default.
- W3028973493 hasConceptScore W3028973493C52001869 @default.
- W3028973493 hasConceptScore W3028973493C52622490 @default.
- W3028973493 hasConceptScore W3028973493C66402592 @default.
- W3028973493 hasConceptScore W3028973493C77805123 @default.
- W3028973493 hasConceptScore W3028973493C81669768 @default.
- W3028973493 hasLocation W30289734931 @default.
- W3028973493 hasOpenAccess W3028973493 @default.
- W3028973493 hasPrimaryLocation W30289734931 @default.
- W3028973493 hasRelatedWork W2940523548 @default.
- W3028973493 hasRelatedWork W2985924212 @default.
- W3028973493 hasRelatedWork W4221021152 @default.
- W3028973493 hasRelatedWork W4221115169 @default.
- W3028973493 hasRelatedWork W4226485841 @default.
- W3028973493 hasRelatedWork W4289347117 @default.
- W3028973493 hasRelatedWork W4297900598 @default.
- W3028973493 hasRelatedWork W4377964522 @default.
- W3028973493 hasRelatedWork W4379932966 @default.
- W3028973493 hasRelatedWork W4386260374 @default.
- W3028973493 isParatext "false" @default.
- W3028973493 isRetracted "false" @default.
- W3028973493 magId "3028973493" @default.
- W3028973493 workType "article" @default.