Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029014910> ?p ?o ?g. }
- W3029014910 endingPage "1744" @default.
- W3029014910 startingPage "1744" @default.
- W3029014910 abstract "Timely and accurate forecasting of crop yields is crucial to food security and sustainable development in the agricultural sector. However, winter wheat yield estimation and forecasting on a regional scale still remains challenging. In this study, we established a two-branch deep learning model to predict winter wheat yield in the main producing regions of China at the county level. The first branch of the model was constructed based on the Long Short-Term Memory (LSTM) networks with inputs from meteorological and remote sensing data. Another branch was constructed using Convolution Neural Networks (CNN) to model static soil features. The model was then trained using the detrended statistical yield data during 1982 to 2015 and evaluated by leave-one-year-out-validation. The evaluation results showed a promising performance of the model with the overall R 2 and RMSE of 0.77 and 721 kg/ha, respectively. We further conducted yield prediction and uncertainty analysis based on the two-branch model and obtained the forecast accuracy in one month prior to harvest of 0.75 and 732 kg/ha. Results also showed that while yield detrending could potentially introduce higher uncertainty, it had the advantage of improving the model performance in yield prediction." @default.
- W3029014910 created "2020-06-05" @default.
- W3029014910 creator A5046271690 @default.
- W3029014910 creator A5047522013 @default.
- W3029014910 creator A5060121865 @default.
- W3029014910 creator A5078340301 @default.
- W3029014910 date "2020-05-28" @default.
- W3029014910 modified "2023-10-18" @default.
- W3029014910 title "Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches" @default.
- W3029014910 cites W1677182931 @default.
- W3029014910 cites W1966365112 @default.
- W3029014910 cites W1974047452 @default.
- W3029014910 cites W1979636379 @default.
- W3029014910 cites W1986072339 @default.
- W3029014910 cites W1991688603 @default.
- W3029014910 cites W1999428071 @default.
- W3029014910 cites W2001826939 @default.
- W3029014910 cites W2010806274 @default.
- W3029014910 cites W2012919770 @default.
- W3029014910 cites W2013973135 @default.
- W3029014910 cites W2015037454 @default.
- W3029014910 cites W2021662310 @default.
- W3029014910 cites W2026631551 @default.
- W3029014910 cites W2056251274 @default.
- W3029014910 cites W2063189603 @default.
- W3029014910 cites W2064675550 @default.
- W3029014910 cites W2066416082 @default.
- W3029014910 cites W2069384557 @default.
- W3029014910 cites W2079525907 @default.
- W3029014910 cites W2084341220 @default.
- W3029014910 cites W2111754935 @default.
- W3029014910 cites W2111959010 @default.
- W3029014910 cites W2120902932 @default.
- W3029014910 cites W2121885753 @default.
- W3029014910 cites W2130560194 @default.
- W3029014910 cites W2141145908 @default.
- W3029014910 cites W2159292710 @default.
- W3029014910 cites W2188767531 @default.
- W3029014910 cites W2212980623 @default.
- W3029014910 cites W2416782259 @default.
- W3029014910 cites W2418118740 @default.
- W3029014910 cites W2461525675 @default.
- W3029014910 cites W2523192248 @default.
- W3029014910 cites W2588003345 @default.
- W3029014910 cites W2589527580 @default.
- W3029014910 cites W2725897987 @default.
- W3029014910 cites W2799638489 @default.
- W3029014910 cites W2809602495 @default.
- W3029014910 cites W2887311010 @default.
- W3029014910 cites W2898519805 @default.
- W3029014910 cites W2900420505 @default.
- W3029014910 cites W2913323966 @default.
- W3029014910 cites W2919115771 @default.
- W3029014910 cites W2943214363 @default.
- W3029014910 cites W2953807054 @default.
- W3029014910 cites W2962325202 @default.
- W3029014910 cites W2980893954 @default.
- W3029014910 cites W2999658315 @default.
- W3029014910 cites W2999884014 @default.
- W3029014910 doi "https://doi.org/10.3390/rs12111744" @default.
- W3029014910 hasPublicationYear "2020" @default.
- W3029014910 type Work @default.
- W3029014910 sameAs 3029014910 @default.
- W3029014910 citedByCount "88" @default.
- W3029014910 countsByYear W30290149102020 @default.
- W3029014910 countsByYear W30290149102021 @default.
- W3029014910 countsByYear W30290149102022 @default.
- W3029014910 countsByYear W30290149102023 @default.
- W3029014910 crossrefType "journal-article" @default.
- W3029014910 hasAuthorship W3029014910A5046271690 @default.
- W3029014910 hasAuthorship W3029014910A5047522013 @default.
- W3029014910 hasAuthorship W3029014910A5060121865 @default.
- W3029014910 hasAuthorship W3029014910A5078340301 @default.
- W3029014910 hasBestOaLocation W30290149101 @default.
- W3029014910 hasConcept C105795698 @default.
- W3029014910 hasConcept C118518473 @default.
- W3029014910 hasConcept C126343540 @default.
- W3029014910 hasConcept C127413603 @default.
- W3029014910 hasConcept C134121241 @default.
- W3029014910 hasConcept C166957645 @default.
- W3029014910 hasConcept C191897082 @default.
- W3029014910 hasConcept C192562407 @default.
- W3029014910 hasConcept C205649164 @default.
- W3029014910 hasConcept C3018661444 @default.
- W3029014910 hasConcept C33923547 @default.
- W3029014910 hasConcept C39432304 @default.
- W3029014910 hasConcept C41008148 @default.
- W3029014910 hasConcept C549605437 @default.
- W3029014910 hasConcept C6557445 @default.
- W3029014910 hasConcept C86803240 @default.
- W3029014910 hasConcept C88463610 @default.
- W3029014910 hasConceptScore W3029014910C105795698 @default.
- W3029014910 hasConceptScore W3029014910C118518473 @default.
- W3029014910 hasConceptScore W3029014910C126343540 @default.
- W3029014910 hasConceptScore W3029014910C127413603 @default.
- W3029014910 hasConceptScore W3029014910C134121241 @default.
- W3029014910 hasConceptScore W3029014910C166957645 @default.
- W3029014910 hasConceptScore W3029014910C191897082 @default.