Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029039898> ?p ?o ?g. }
- W3029039898 abstract "Abstract Background Patient experience surveys often include free-text responses. Analysis of these responses is time-consuming and often underutilized. This study examined whether Natural Language Processing (NLP) techniques could provide a data-driven, hospital-independent solution to indicate points for quality improvement. Methods This retrospective study used routinely collected patient experience data from two hospitals. A data-driven NLP approach was used. Free-text responses were categorized into topics, subtopics (i.e. n-grams) and labelled with a sentiment score. The indicator ‘impact’, combining sentiment and frequency, was calculated to reveal topics to improve, monitor or celebrate. The topic modelling architecture was tested on data from a second hospital to examine whether the architecture is transferable to another hospital. Results A total of 38,664 survey responses from the first hospital resulted in 127 topics and 294 n-grams. The indicator ‘impact’ revealed n-grams to celebrate (15.3%), improve (8.8%), and monitor (16.7%). For hospital 2, a similar percentage of free-text responses could be labelled with a topic and n-grams. Between-hospitals, most topics (69.7%) were similar, but 32.2% of topics for hospital 1 and 29.0% of topics for hospital 2 were unique. Conclusions In both hospitals, NLP techniques could be used to categorize patient experience free-text responses into topics, sentiment labels and to define priorities for improvement. The model’s architecture was shown to be hospital-specific as it was able to discover new topics for the second hospital. These methods should be considered for future patient experience analyses to make better use of this valuable source of information." @default.
- W3029039898 created "2020-06-05" @default.
- W3029039898 creator A5011613339 @default.
- W3029039898 creator A5021420936 @default.
- W3029039898 creator A5029869005 @default.
- W3029039898 creator A5051131211 @default.
- W3029039898 creator A5054814244 @default.
- W3029039898 creator A5077533695 @default.
- W3029039898 creator A5091435927 @default.
- W3029039898 date "2020-05-27" @default.
- W3029039898 modified "2023-10-12" @default.
- W3029039898 title "How to automatically turn patient experience free-text responses into actionable insights: a natural language programming (NLP) approach" @default.
- W3029039898 cites W1988423288 @default.
- W3029039898 cites W2011301426 @default.
- W3029039898 cites W2058281425 @default.
- W3029039898 cites W2076219102 @default.
- W3029039898 cites W2127109099 @default.
- W3029039898 cites W2129961060 @default.
- W3029039898 cites W2169606435 @default.
- W3029039898 cites W2180737626 @default.
- W3029039898 cites W2205836349 @default.
- W3029039898 cites W2479432844 @default.
- W3029039898 cites W2559702348 @default.
- W3029039898 cites W2625970605 @default.
- W3029039898 cites W2759758195 @default.
- W3029039898 cites W2767914509 @default.
- W3029039898 cites W2782481508 @default.
- W3029039898 cites W4294214983 @default.
- W3029039898 doi "https://doi.org/10.1186/s12911-020-1104-5" @default.
- W3029039898 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7251822" @default.
- W3029039898 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32460734" @default.
- W3029039898 hasPublicationYear "2020" @default.
- W3029039898 type Work @default.
- W3029039898 sameAs 3029039898 @default.
- W3029039898 citedByCount "14" @default.
- W3029039898 countsByYear W30290398982020 @default.
- W3029039898 countsByYear W30290398982021 @default.
- W3029039898 countsByYear W30290398982022 @default.
- W3029039898 countsByYear W30290398982023 @default.
- W3029039898 crossrefType "journal-article" @default.
- W3029039898 hasAuthorship W3029039898A5011613339 @default.
- W3029039898 hasAuthorship W3029039898A5021420936 @default.
- W3029039898 hasAuthorship W3029039898A5029869005 @default.
- W3029039898 hasAuthorship W3029039898A5051131211 @default.
- W3029039898 hasAuthorship W3029039898A5054814244 @default.
- W3029039898 hasAuthorship W3029039898A5077533695 @default.
- W3029039898 hasAuthorship W3029039898A5091435927 @default.
- W3029039898 hasBestOaLocation W30290398981 @default.
- W3029039898 hasConcept C123657996 @default.
- W3029039898 hasConcept C136764020 @default.
- W3029039898 hasConcept C138816342 @default.
- W3029039898 hasConcept C142362112 @default.
- W3029039898 hasConcept C145642194 @default.
- W3029039898 hasConcept C153349607 @default.
- W3029039898 hasConcept C154945302 @default.
- W3029039898 hasConcept C159110408 @default.
- W3029039898 hasConcept C204321447 @default.
- W3029039898 hasConcept C23123220 @default.
- W3029039898 hasConcept C3018949938 @default.
- W3029039898 hasConcept C41008148 @default.
- W3029039898 hasConcept C66402592 @default.
- W3029039898 hasConcept C71472368 @default.
- W3029039898 hasConcept C71924100 @default.
- W3029039898 hasConcept C94124525 @default.
- W3029039898 hasConceptScore W3029039898C123657996 @default.
- W3029039898 hasConceptScore W3029039898C136764020 @default.
- W3029039898 hasConceptScore W3029039898C138816342 @default.
- W3029039898 hasConceptScore W3029039898C142362112 @default.
- W3029039898 hasConceptScore W3029039898C145642194 @default.
- W3029039898 hasConceptScore W3029039898C153349607 @default.
- W3029039898 hasConceptScore W3029039898C154945302 @default.
- W3029039898 hasConceptScore W3029039898C159110408 @default.
- W3029039898 hasConceptScore W3029039898C204321447 @default.
- W3029039898 hasConceptScore W3029039898C23123220 @default.
- W3029039898 hasConceptScore W3029039898C3018949938 @default.
- W3029039898 hasConceptScore W3029039898C41008148 @default.
- W3029039898 hasConceptScore W3029039898C66402592 @default.
- W3029039898 hasConceptScore W3029039898C71472368 @default.
- W3029039898 hasConceptScore W3029039898C71924100 @default.
- W3029039898 hasConceptScore W3029039898C94124525 @default.
- W3029039898 hasIssue "1" @default.
- W3029039898 hasLocation W30290398981 @default.
- W3029039898 hasLocation W30290398982 @default.
- W3029039898 hasLocation W30290398983 @default.
- W3029039898 hasLocation W30290398984 @default.
- W3029039898 hasLocation W30290398985 @default.
- W3029039898 hasOpenAccess W3029039898 @default.
- W3029039898 hasPrimaryLocation W30290398981 @default.
- W3029039898 hasRelatedWork W1981409820 @default.
- W3029039898 hasRelatedWork W2059635859 @default.
- W3029039898 hasRelatedWork W2096737792 @default.
- W3029039898 hasRelatedWork W2296544548 @default.
- W3029039898 hasRelatedWork W2559353004 @default.
- W3029039898 hasRelatedWork W2596306152 @default.
- W3029039898 hasRelatedWork W2901590103 @default.
- W3029039898 hasRelatedWork W2956339507 @default.
- W3029039898 hasRelatedWork W3014509064 @default.
- W3029039898 hasRelatedWork W3015597294 @default.
- W3029039898 hasVolume "20" @default.
- W3029039898 isParatext "false" @default.