Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029143516> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3029143516 endingPage "962" @default.
- W3029143516 startingPage "957" @default.
- W3029143516 abstract "ObjectiveTo investigate whether a deep learning-based model using unenhanced computed tomography (CT) at baseline could predict the malignancy of pulmonary nodules.MethodsA deep learning model was trained and applied for the discrimination of pulmonary nodule in Dr. Wise Lung Analyzer. This study retrospectively recruited 130 consecutive participants with pulmonary nodules detected on CT who undergoing biopsy or surgery from May 2009 to June 2017 in Jinling hospital. A total of 136 pulmonary nodules were included in this study, including 86 malignant nodules and 50 benign ones. All patients underwent CT scans 2 times at least, the first scan was defined as baseline and the last scan before the pathological results was defined as final scan. The ROC curve of deep learning model was plotted and the AUCs were calculated. Delong test was used to examine the difference of AUCs baseline and final scan. The nodules were further divided into subsolid nodule group (pure ground-glass nodule and part solid nodule) (n=87) and solid nodule group (n=49). The difference of AUCs at baseline and final scans was evaluated intra two groups.ResultsThe AUCs of the deep learning model at final and baseline scans were 0.876 and 0.819, respectively. There was no significant difference between them (P=0.075). The result indicated that the model could predict the consequences of pulmonary nodules well at baseline. In small nodules (longest diameter ≤10mm), the AUC at final scan (0.847) was better than it at baseline scan (0.734), but there was no significant difference between them (P=0.058). In solid nodule group, The AUC at final scan (0.932) was better than it at baseline scan (0.835), but there was no significant difference between them (P=0.066). In subsolid nodule group, the deep learning model exhibited consistent performance at final scan (AUC, 0.759) with the baseline scan (AUC, 0.728, P=0.580).ConclusionsThe deep learning model could predict the malignancy of pulmonary nodules including small ones at baseline, and the model exhibited consistent performance between baseline and final scans in subsolid nodules.Key words: Pulmonary nodule; Deep learning; Follow up" @default.
- W3029143516 created "2020-06-05" @default.
- W3029143516 creator A5002289563 @default.
- W3029143516 creator A5014448223 @default.
- W3029143516 creator A5031227823 @default.
- W3029143516 creator A5047951539 @default.
- W3029143516 creator A5055207211 @default.
- W3029143516 creator A5057059532 @default.
- W3029143516 creator A5057533742 @default.
- W3029143516 creator A5085590034 @default.
- W3029143516 date "2019-11-10" @default.
- W3029143516 modified "2023-09-23" @default.
- W3029143516 title "Predicting the malignancy of pulmonary nodules using baseline chest CT: an application study of deep learning model" @default.
- W3029143516 doi "https://doi.org/10.3760/cma.j.issn.1005-1201.2019.11.006" @default.
- W3029143516 hasPublicationYear "2019" @default.
- W3029143516 type Work @default.
- W3029143516 sameAs 3029143516 @default.
- W3029143516 citedByCount "0" @default.
- W3029143516 crossrefType "journal-article" @default.
- W3029143516 hasAuthorship W3029143516A5002289563 @default.
- W3029143516 hasAuthorship W3029143516A5014448223 @default.
- W3029143516 hasAuthorship W3029143516A5031227823 @default.
- W3029143516 hasAuthorship W3029143516A5047951539 @default.
- W3029143516 hasAuthorship W3029143516A5055207211 @default.
- W3029143516 hasAuthorship W3029143516A5057059532 @default.
- W3029143516 hasAuthorship W3029143516A5057533742 @default.
- W3029143516 hasAuthorship W3029143516A5085590034 @default.
- W3029143516 hasConcept C126322002 @default.
- W3029143516 hasConcept C126838900 @default.
- W3029143516 hasConcept C142724271 @default.
- W3029143516 hasConcept C151730666 @default.
- W3029143516 hasConcept C2775934546 @default.
- W3029143516 hasConcept C2776731575 @default.
- W3029143516 hasConcept C2777714996 @default.
- W3029143516 hasConcept C2779399171 @default.
- W3029143516 hasConcept C2780244788 @default.
- W3029143516 hasConcept C2989005 @default.
- W3029143516 hasConcept C544519230 @default.
- W3029143516 hasConcept C58471807 @default.
- W3029143516 hasConcept C71924100 @default.
- W3029143516 hasConcept C86803240 @default.
- W3029143516 hasConceptScore W3029143516C126322002 @default.
- W3029143516 hasConceptScore W3029143516C126838900 @default.
- W3029143516 hasConceptScore W3029143516C142724271 @default.
- W3029143516 hasConceptScore W3029143516C151730666 @default.
- W3029143516 hasConceptScore W3029143516C2775934546 @default.
- W3029143516 hasConceptScore W3029143516C2776731575 @default.
- W3029143516 hasConceptScore W3029143516C2777714996 @default.
- W3029143516 hasConceptScore W3029143516C2779399171 @default.
- W3029143516 hasConceptScore W3029143516C2780244788 @default.
- W3029143516 hasConceptScore W3029143516C2989005 @default.
- W3029143516 hasConceptScore W3029143516C544519230 @default.
- W3029143516 hasConceptScore W3029143516C58471807 @default.
- W3029143516 hasConceptScore W3029143516C71924100 @default.
- W3029143516 hasConceptScore W3029143516C86803240 @default.
- W3029143516 hasIssue "11" @default.
- W3029143516 hasLocation W30291435161 @default.
- W3029143516 hasOpenAccess W3029143516 @default.
- W3029143516 hasPrimaryLocation W30291435161 @default.
- W3029143516 hasRelatedWork W1491691068 @default.
- W3029143516 hasRelatedWork W1979446622 @default.
- W3029143516 hasRelatedWork W1997818130 @default.
- W3029143516 hasRelatedWork W2031605918 @default.
- W3029143516 hasRelatedWork W2085641607 @default.
- W3029143516 hasRelatedWork W2134302089 @default.
- W3029143516 hasRelatedWork W2360805233 @default.
- W3029143516 hasRelatedWork W2384062819 @default.
- W3029143516 hasRelatedWork W2391626203 @default.
- W3029143516 hasRelatedWork W2393301260 @default.
- W3029143516 hasRelatedWork W2811475446 @default.
- W3029143516 hasRelatedWork W2912838156 @default.
- W3029143516 hasRelatedWork W2987831544 @default.
- W3029143516 hasRelatedWork W2990381887 @default.
- W3029143516 hasRelatedWork W3005403585 @default.
- W3029143516 hasRelatedWork W3028873642 @default.
- W3029143516 hasRelatedWork W3031017716 @default.
- W3029143516 hasRelatedWork W3031523569 @default.
- W3029143516 hasRelatedWork W3031656395 @default.
- W3029143516 hasRelatedWork W3155078015 @default.
- W3029143516 hasVolume "53" @default.
- W3029143516 isParatext "false" @default.
- W3029143516 isRetracted "false" @default.
- W3029143516 magId "3029143516" @default.
- W3029143516 workType "article" @default.