Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029278466> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3029278466 endingPage "354" @default.
- W3029278466 startingPage "345" @default.
- W3029278466 abstract "Adverse events (AEs) are undesirable outcomes of medication administration and cause many hospitalizations as well as even deaths per year. Information about AEs can enable their prevention. Natural language processing (NLP) techniques can identify AEs from narratives and match them to a structured terminology. We propose a novel neural network for AE normalization utilizing bidirectional long short-term memory (biLSTM) with attention mechanism that generalizes to diverse datasets. We train this network to first learn a framework for general AE normalization and then to learn the specifics of the task on individual corpora. Our results on the datasets from the Text Analysis Conference (TAC) 2017-ADR track, FDA adverse drug event evaluation shared task, and the Social Media Mining for Health Applications Workshop & Shared Task 2019 show that our approach outperforms widely used rule-based normalizers on a diverse set of narratives. Additionally, it outperforms the best normalization system by 4.86 in macro-averaged F1-score in the TAC 2017-ADR track." @default.
- W3029278466 created "2020-06-05" @default.
- W3029278466 creator A5021769068 @default.
- W3029278466 creator A5070926324 @default.
- W3029278466 date "2020-01-01" @default.
- W3029278466 modified "2023-10-10" @default.
- W3029278466 title "Normalizing Adverse Events using Recurrent Neural Networks with Attention." @default.
- W3029278466 cites W1550258693 @default.
- W3029278466 cites W2064675550 @default.
- W3029278466 cites W2106797966 @default.
- W3029278466 cites W2118599489 @default.
- W3029278466 cites W2129038679 @default.
- W3029278466 cites W2142741334 @default.
- W3029278466 cites W2142786899 @default.
- W3029278466 cites W2146089916 @default.
- W3029278466 cites W2159583324 @default.
- W3029278466 cites W2786361492 @default.
- W3029278466 cites W2808598571 @default.
- W3029278466 cites W2963956191 @default.
- W3029278466 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7233057" @default.
- W3029278466 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32477654" @default.
- W3029278466 hasPublicationYear "2020" @default.
- W3029278466 type Work @default.
- W3029278466 sameAs 3029278466 @default.
- W3029278466 citedByCount "0" @default.
- W3029278466 crossrefType "journal-article" @default.
- W3029278466 hasAuthorship W3029278466A5021769068 @default.
- W3029278466 hasAuthorship W3029278466A5070926324 @default.
- W3029278466 hasConcept C119857082 @default.
- W3029278466 hasConcept C136886441 @default.
- W3029278466 hasConcept C138885662 @default.
- W3029278466 hasConcept C144024400 @default.
- W3029278466 hasConcept C148524875 @default.
- W3029278466 hasConcept C154945302 @default.
- W3029278466 hasConcept C162324750 @default.
- W3029278466 hasConcept C187736073 @default.
- W3029278466 hasConcept C19165224 @default.
- W3029278466 hasConcept C199033989 @default.
- W3029278466 hasConcept C204321447 @default.
- W3029278466 hasConcept C2780451532 @default.
- W3029278466 hasConcept C41008148 @default.
- W3029278466 hasConcept C41895202 @default.
- W3029278466 hasConcept C50644808 @default.
- W3029278466 hasConcept C547195049 @default.
- W3029278466 hasConceptScore W3029278466C119857082 @default.
- W3029278466 hasConceptScore W3029278466C136886441 @default.
- W3029278466 hasConceptScore W3029278466C138885662 @default.
- W3029278466 hasConceptScore W3029278466C144024400 @default.
- W3029278466 hasConceptScore W3029278466C148524875 @default.
- W3029278466 hasConceptScore W3029278466C154945302 @default.
- W3029278466 hasConceptScore W3029278466C162324750 @default.
- W3029278466 hasConceptScore W3029278466C187736073 @default.
- W3029278466 hasConceptScore W3029278466C19165224 @default.
- W3029278466 hasConceptScore W3029278466C199033989 @default.
- W3029278466 hasConceptScore W3029278466C204321447 @default.
- W3029278466 hasConceptScore W3029278466C2780451532 @default.
- W3029278466 hasConceptScore W3029278466C41008148 @default.
- W3029278466 hasConceptScore W3029278466C41895202 @default.
- W3029278466 hasConceptScore W3029278466C50644808 @default.
- W3029278466 hasConceptScore W3029278466C547195049 @default.
- W3029278466 hasLocation W30292784661 @default.
- W3029278466 hasOpenAccess W3029278466 @default.
- W3029278466 hasPrimaryLocation W30292784661 @default.
- W3029278466 hasRelatedWork W2081647779 @default.
- W3029278466 hasRelatedWork W2789244308 @default.
- W3029278466 hasRelatedWork W2947903144 @default.
- W3029278466 hasRelatedWork W2950940844 @default.
- W3029278466 hasRelatedWork W2990109640 @default.
- W3029278466 hasRelatedWork W3107474891 @default.
- W3029278466 hasRelatedWork W3194539120 @default.
- W3029278466 hasRelatedWork W4220933319 @default.
- W3029278466 hasRelatedWork W4287900735 @default.
- W3029278466 hasRelatedWork W1629725936 @default.
- W3029278466 hasVolume "2020" @default.
- W3029278466 isParatext "false" @default.
- W3029278466 isRetracted "false" @default.
- W3029278466 magId "3029278466" @default.
- W3029278466 workType "article" @default.