Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029366905> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3029366905 endingPage "291" @default.
- W3029366905 startingPage "274" @default.
- W3029366905 abstract "Recent advances in optical sensor technologies and Geoinformatics, can support very large scale high definition, used for multispectral and panchromatic images. This capability allows the use of remote sensing for the observation of complex earth ecosystems. Application areas include, sustainability of biodiversity, precision agriculture, land, crops and parasites management. Moreover, it supports advanced quantitative studies of biophysical and biogeochemical cycles, in costal or inland waters. The requirement for precise and effective scene classification, can significantly contribute towards the development of new types of decision support systems. This offers considerable advantages to business, science and engineering. This research paper proposes a novel and effective approach based on geographic object-based scene classification in remote sensing images. More specifically, it introduces an important upgrade of the well-known Residual Neural Network (ResNet) architecture. The omission of some layers in the early stages of training, achieves an effective simplification of the network, by eliminating the “Vanishing Gradient Problem” (VGP) which causes efficiency limitations in other “Deep Learning” (DEL) architectures. The use of the Softmax activation function instead of the Sigmoid in the last layer, is the most important innovation of the proposed system. The ResNet has been trained using the novel AdaBound algorithm that employs dynamic bounds on the employed learning rates. The result is the employment of a smooth transition of the stochastic gradient descent, tackling the noise dispersed points of misclassification with great precision. This is something that other spectral classification methods cannot handle. The proposed algorithm was successfully tested, in scene identification from remote sensing images. This confirms that it could be further used in advanced level processes for Large-Scale Geospatial Data Analysis, such as cross-border classification, recognition and monitoring of certain patterns and multi-sensor data fusion." @default.
- W3029366905 created "2020-06-05" @default.
- W3029366905 creator A5013635993 @default.
- W3029366905 creator A5041338608 @default.
- W3029366905 creator A5064140827 @default.
- W3029366905 date "2020-01-01" @default.
- W3029366905 modified "2023-09-24" @default.
- W3029366905 title "Large-Scale Geospatial Data Analysis: Geographic Object-Based Scene Classification in Remote Sensing Images by GIS and Deep Residual Learning" @default.
- W3029366905 cites W1521436688 @default.
- W3029366905 cites W1893585201 @default.
- W3029366905 cites W1912954554 @default.
- W3029366905 cites W1966580635 @default.
- W3029366905 cites W1980038761 @default.
- W3029366905 cites W1988981738 @default.
- W3029366905 cites W2029316659 @default.
- W3029366905 cites W2076063813 @default.
- W3029366905 cites W2076983043 @default.
- W3029366905 cites W2092155521 @default.
- W3029366905 cites W2144796873 @default.
- W3029366905 cites W2158698691 @default.
- W3029366905 cites W2179290474 @default.
- W3029366905 cites W2500751094 @default.
- W3029366905 cites W2604086375 @default.
- W3029366905 cites W2745032840 @default.
- W3029366905 cites W2757208835 @default.
- W3029366905 cites W2885942967 @default.
- W3029366905 cites W2909729792 @default.
- W3029366905 cites W2919352650 @default.
- W3029366905 cites W4240485910 @default.
- W3029366905 doi "https://doi.org/10.1007/978-3-030-48791-1_21" @default.
- W3029366905 hasPublicationYear "2020" @default.
- W3029366905 type Work @default.
- W3029366905 sameAs 3029366905 @default.
- W3029366905 citedByCount "4" @default.
- W3029366905 countsByYear W30293669052021 @default.
- W3029366905 countsByYear W30293669052023 @default.
- W3029366905 crossrefType "book-chapter" @default.
- W3029366905 hasAuthorship W3029366905A5013635993 @default.
- W3029366905 hasAuthorship W3029366905A5041338608 @default.
- W3029366905 hasAuthorship W3029366905A5064140827 @default.
- W3029366905 hasConcept C108583219 @default.
- W3029366905 hasConcept C109364679 @default.
- W3029366905 hasConcept C124101348 @default.
- W3029366905 hasConcept C154945302 @default.
- W3029366905 hasConcept C159078339 @default.
- W3029366905 hasConcept C173163844 @default.
- W3029366905 hasConcept C188441871 @default.
- W3029366905 hasConcept C205649164 @default.
- W3029366905 hasConcept C2778755073 @default.
- W3029366905 hasConcept C41008148 @default.
- W3029366905 hasConcept C41856607 @default.
- W3029366905 hasConcept C58640448 @default.
- W3029366905 hasConcept C62649853 @default.
- W3029366905 hasConcept C9770341 @default.
- W3029366905 hasConceptScore W3029366905C108583219 @default.
- W3029366905 hasConceptScore W3029366905C109364679 @default.
- W3029366905 hasConceptScore W3029366905C124101348 @default.
- W3029366905 hasConceptScore W3029366905C154945302 @default.
- W3029366905 hasConceptScore W3029366905C159078339 @default.
- W3029366905 hasConceptScore W3029366905C173163844 @default.
- W3029366905 hasConceptScore W3029366905C188441871 @default.
- W3029366905 hasConceptScore W3029366905C205649164 @default.
- W3029366905 hasConceptScore W3029366905C2778755073 @default.
- W3029366905 hasConceptScore W3029366905C41008148 @default.
- W3029366905 hasConceptScore W3029366905C41856607 @default.
- W3029366905 hasConceptScore W3029366905C58640448 @default.
- W3029366905 hasConceptScore W3029366905C62649853 @default.
- W3029366905 hasConceptScore W3029366905C9770341 @default.
- W3029366905 hasLocation W30293669051 @default.
- W3029366905 hasOpenAccess W3029366905 @default.
- W3029366905 hasPrimaryLocation W30293669051 @default.
- W3029366905 hasRelatedWork W1552304540 @default.
- W3029366905 hasRelatedWork W2022304901 @default.
- W3029366905 hasRelatedWork W2032332878 @default.
- W3029366905 hasRelatedWork W2046570986 @default.
- W3029366905 hasRelatedWork W2138205097 @default.
- W3029366905 hasRelatedWork W2148382548 @default.
- W3029366905 hasRelatedWork W2540644541 @default.
- W3029366905 hasRelatedWork W2612882618 @default.
- W3029366905 hasRelatedWork W2776398399 @default.
- W3029366905 hasRelatedWork W3169727911 @default.
- W3029366905 isParatext "false" @default.
- W3029366905 isRetracted "false" @default.
- W3029366905 magId "3029366905" @default.
- W3029366905 workType "book-chapter" @default.