Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029385555> ?p ?o ?g. }
- W3029385555 abstract "Background: Early-stage diagnosis and treatment can improve survival rates of liver cancer patients. Dynamic contrast-enhanced MRI provides the most comprehensive information for differential diagnosis of liver tumors. However, MRI diagnosis is affected by subjective experience, so deep learning may supply a new diagnostic strategy. We used convolutional neural networks (CNNs) to develop a deep learning system (DLS) to classify liver tumors based on enhanced MR images, unenhanced MR images, and clinical data including text and laboratory test results. Methods: Using data from 1,210 patients with liver tumors (N = 31,608 images), we trained CNNs to get seven-way classifiers, binary classifiers, and three-way malignancy-classifiers (Model A-Model G). Models were validated in an external independent extended cohort of 201 patients (N = 6,816 images). The area under receiver operating characteristic (ROC) curve (AUC) were compared across different models. We also compared the sensitivity and specificity of models with the performance of three experienced radiologists. Results: Deep learning achieves a performance on par with three experienced radiologists on classifying liver tumors in seven categories. Using only unenhanced images, CNN performs well in distinguishing malignant from benign liver tumors (AUC, 0.946; 95% CI 0.914-0.979 vs. 0.951; 0.919-0.982, P = 0.664). New CNN combining unenhanced images with clinical data greatly improved the performance of classifying malignancies as hepatocellular carcinoma (AUC, 0.985; 95% CI 0.960-1.000), metastatic tumors (0.998; 0.989-1.000), and other primary malignancies (0.963; 0.896-1.000), and the agreement with pathology was 91.9%.These models mined diagnostic information in unenhanced images and clinical data by deep-neural-network, which were different to previous methods that utilized enhanced images. The sensitivity and specificity of almost every category in these models reached the same high level compared to three experienced radiologists. Conclusion: Trained with data in various acquisition conditions, DLS that integrated these models could be used as an accurate and time-saving assisted-diagnostic strategy for liver tumors in clinical settings, even in the absence of contrast agents. DLS therefore has the potential to avoid contrast-related side effects and reduce economic costs associated with current standard MRI inspection practices for liver tumor patients." @default.
- W3029385555 created "2020-06-05" @default.
- W3029385555 creator A5000358358 @default.
- W3029385555 creator A5009125601 @default.
- W3029385555 creator A5010419525 @default.
- W3029385555 creator A5012412861 @default.
- W3029385555 creator A5029144640 @default.
- W3029385555 creator A5032760251 @default.
- W3029385555 creator A5035250399 @default.
- W3029385555 creator A5036135781 @default.
- W3029385555 creator A5050155780 @default.
- W3029385555 creator A5052114926 @default.
- W3029385555 creator A5056595224 @default.
- W3029385555 creator A5062517613 @default.
- W3029385555 creator A5064221120 @default.
- W3029385555 creator A5078995696 @default.
- W3029385555 creator A5085733179 @default.
- W3029385555 date "2020-05-28" @default.
- W3029385555 modified "2023-10-16" @default.
- W3029385555 title "Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data" @default.
- W3029385555 cites W1806101983 @default.
- W3029385555 cites W1966976587 @default.
- W3029385555 cites W2008979634 @default.
- W3029385555 cites W2019694480 @default.
- W3029385555 cites W2073509515 @default.
- W3029385555 cites W2108367635 @default.
- W3029385555 cites W2115259020 @default.
- W3029385555 cites W2117539524 @default.
- W3029385555 cites W2125662684 @default.
- W3029385555 cites W2130325374 @default.
- W3029385555 cites W2137591261 @default.
- W3029385555 cites W2163345210 @default.
- W3029385555 cites W2171104739 @default.
- W3029385555 cites W2174661749 @default.
- W3029385555 cites W2277004004 @default.
- W3029385555 cites W2278216384 @default.
- W3029385555 cites W2314882532 @default.
- W3029385555 cites W2345010043 @default.
- W3029385555 cites W2443930731 @default.
- W3029385555 cites W2563886529 @default.
- W3029385555 cites W2581082771 @default.
- W3029385555 cites W2625856057 @default.
- W3029385555 cites W2626613451 @default.
- W3029385555 cites W2765571304 @default.
- W3029385555 cites W2772246530 @default.
- W3029385555 cites W2776719494 @default.
- W3029385555 cites W2801458876 @default.
- W3029385555 cites W2883424428 @default.
- W3029385555 cites W2891968130 @default.
- W3029385555 cites W2899635607 @default.
- W3029385555 cites W2904572485 @default.
- W3029385555 cites W2911605224 @default.
- W3029385555 cites W2919115771 @default.
- W3029385555 cites W2941555836 @default.
- W3029385555 cites W2944918936 @default.
- W3029385555 cites W2946185430 @default.
- W3029385555 cites W2962858109 @default.
- W3029385555 cites W2982580298 @default.
- W3029385555 cites W2984559910 @default.
- W3029385555 cites W3002876351 @default.
- W3029385555 cites W4210955410 @default.
- W3029385555 cites W4294214983 @default.
- W3029385555 doi "https://doi.org/10.3389/fonc.2020.00680" @default.
- W3029385555 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7271965" @default.
- W3029385555 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32547939" @default.
- W3029385555 hasPublicationYear "2020" @default.
- W3029385555 type Work @default.
- W3029385555 sameAs 3029385555 @default.
- W3029385555 citedByCount "91" @default.
- W3029385555 countsByYear W30293855552020 @default.
- W3029385555 countsByYear W30293855552021 @default.
- W3029385555 countsByYear W30293855552022 @default.
- W3029385555 countsByYear W30293855552023 @default.
- W3029385555 crossrefType "journal-article" @default.
- W3029385555 hasAuthorship W3029385555A5000358358 @default.
- W3029385555 hasAuthorship W3029385555A5009125601 @default.
- W3029385555 hasAuthorship W3029385555A5010419525 @default.
- W3029385555 hasAuthorship W3029385555A5012412861 @default.
- W3029385555 hasAuthorship W3029385555A5029144640 @default.
- W3029385555 hasAuthorship W3029385555A5032760251 @default.
- W3029385555 hasAuthorship W3029385555A5035250399 @default.
- W3029385555 hasAuthorship W3029385555A5036135781 @default.
- W3029385555 hasAuthorship W3029385555A5050155780 @default.
- W3029385555 hasAuthorship W3029385555A5052114926 @default.
- W3029385555 hasAuthorship W3029385555A5056595224 @default.
- W3029385555 hasAuthorship W3029385555A5062517613 @default.
- W3029385555 hasAuthorship W3029385555A5064221120 @default.
- W3029385555 hasAuthorship W3029385555A5078995696 @default.
- W3029385555 hasAuthorship W3029385555A5085733179 @default.
- W3029385555 hasBestOaLocation W30293855551 @default.
- W3029385555 hasConcept C108583219 @default.
- W3029385555 hasConcept C126322002 @default.
- W3029385555 hasConcept C126838900 @default.
- W3029385555 hasConcept C142724271 @default.
- W3029385555 hasConcept C143409427 @default.
- W3029385555 hasConcept C154945302 @default.
- W3029385555 hasConcept C2778019345 @default.
- W3029385555 hasConcept C2779399171 @default.
- W3029385555 hasConcept C41008148 @default.
- W3029385555 hasConcept C58471807 @default.