Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029405909> ?p ?o ?g. }
- W3029405909 endingPage "4668" @default.
- W3029405909 startingPage "4655" @default.
- W3029405909 abstract "Electronic polarization effects have been suggested to play an important role in proton binding to titratable residues in proteins. In this work, we describe a new computational method for pKa calculations, using Monte Carlo (MC) simulations to sample protein protonation states with the Drude polarizable force field and Poisson–Boltzmann (PB) continuum electrostatic solvent model. While the most populated protonation states at the selected pH, corresponding to residues that are half-protonated at that pH, are sampled using the exact relative free energies computed with Drude particles optimized in the field of the PB implicit solvation model, we introduce an approximation for the protein polarization of low-populated protonation states to reduce the computational cost. The highly populated protonation states used to compute the polarization and pKa’s are then iteratively improved until convergence. It is shown that for lysozyme, when considering 9 of the 18 titratable residues, the new method converged within two iterations with computed pKa’s differing only by 0.02 pH units from pKa’s estimated with the exact approach. Application of the method to predict pKa’s of 94 titratable side chains in 8 proteins shows the Drude-PB model to produce physically more correct results as compared to the additive CHARMM36 (C36) force field (FF). With a dielectric constant of two assigned to the protein interior the Root Mean Square (RMS) deviation between computed and experimental pKa’s is 2.07 and 3.19 pH units with the Drude and C36 models, respectively, and the RMS deviation using the Drude-PB model is relatively insensitive to the choice of the internal dielectric constant in contrast to the additive C36 model. At the higher internal dielectric constant of 20, pKa’s computed with the additive C36 model converge to the results obtained with the Drude polarizable force field, indicating the need to artificially overestimate electrostatic screening in a nonphysical way with the additive FF. In addition, inclusion of both syn and anti orientations of the proton in the neutral state of acidic groups is shown to yield improved agreement with experiment. The present work, which is the first example of the use of a polarizable model for the prediction of pKa’s in proteins, shows that the use of a polarizable model represents a more physically correct model for the treatment of electrostatic contributions to pKa shifts in proteins." @default.
- W3029405909 created "2020-06-05" @default.
- W3029405909 creator A5009720024 @default.
- W3029405909 creator A5056944006 @default.
- W3029405909 creator A5080873196 @default.
- W3029405909 date "2020-05-28" @default.
- W3029405909 modified "2023-10-16" @default.
- W3029405909 title "p<i>K</i><sub>a</sub> Calculations with the Polarizable Drude Force Field and Poisson–Boltzmann Solvation Model" @default.
- W3029405909 cites W1487420490 @default.
- W3029405909 cites W1952317074 @default.
- W3029405909 cites W1969591990 @default.
- W3029405909 cites W1976499671 @default.
- W3029405909 cites W1995141949 @default.
- W3029405909 cites W1999938940 @default.
- W3029405909 cites W2001822845 @default.
- W3029405909 cites W2004145462 @default.
- W3029405909 cites W2010597259 @default.
- W3029405909 cites W2011435358 @default.
- W3029405909 cites W2011807123 @default.
- W3029405909 cites W2014042350 @default.
- W3029405909 cites W2018424198 @default.
- W3029405909 cites W2021534482 @default.
- W3029405909 cites W2027408247 @default.
- W3029405909 cites W2028590095 @default.
- W3029405909 cites W2030841140 @default.
- W3029405909 cites W2039665613 @default.
- W3029405909 cites W2040816544 @default.
- W3029405909 cites W2043529199 @default.
- W3029405909 cites W2043886357 @default.
- W3029405909 cites W2046102151 @default.
- W3029405909 cites W2047399603 @default.
- W3029405909 cites W2051568142 @default.
- W3029405909 cites W2059745204 @default.
- W3029405909 cites W2060304556 @default.
- W3029405909 cites W2060872117 @default.
- W3029405909 cites W2070144513 @default.
- W3029405909 cites W2075369230 @default.
- W3029405909 cites W2075662564 @default.
- W3029405909 cites W2076407822 @default.
- W3029405909 cites W2079372760 @default.
- W3029405909 cites W2081545597 @default.
- W3029405909 cites W2086455899 @default.
- W3029405909 cites W2093238267 @default.
- W3029405909 cites W2120715487 @default.
- W3029405909 cites W2128640429 @default.
- W3029405909 cites W2131713387 @default.
- W3029405909 cites W2132262459 @default.
- W3029405909 cites W2133558724 @default.
- W3029405909 cites W2150981663 @default.
- W3029405909 cites W2156777159 @default.
- W3029405909 cites W2158667963 @default.
- W3029405909 cites W2163168043 @default.
- W3029405909 cites W2166478478 @default.
- W3029405909 cites W2168240189 @default.
- W3029405909 cites W2322510524 @default.
- W3029405909 cites W2332112743 @default.
- W3029405909 cites W2487226024 @default.
- W3029405909 cites W2741657034 @default.
- W3029405909 cites W2800916135 @default.
- W3029405909 cites W2810398033 @default.
- W3029405909 cites W4321429199 @default.
- W3029405909 doi "https://doi.org/10.1021/acs.jctc.0c00111" @default.
- W3029405909 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7428141" @default.
- W3029405909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32464053" @default.
- W3029405909 hasPublicationYear "2020" @default.
- W3029405909 type Work @default.
- W3029405909 sameAs 3029405909 @default.
- W3029405909 citedByCount "12" @default.
- W3029405909 countsByYear W30294059092020 @default.
- W3029405909 countsByYear W30294059092021 @default.
- W3029405909 countsByYear W30294059092022 @default.
- W3029405909 countsByYear W30294059092023 @default.
- W3029405909 crossrefType "journal-article" @default.
- W3029405909 hasAuthorship W3029405909A5009720024 @default.
- W3029405909 hasAuthorship W3029405909A5056944006 @default.
- W3029405909 hasAuthorship W3029405909A5080873196 @default.
- W3029405909 hasBestOaLocation W30294059092 @default.
- W3029405909 hasConcept C10803110 @default.
- W3029405909 hasConcept C109757611 @default.
- W3029405909 hasConcept C121332964 @default.
- W3029405909 hasConcept C121864883 @default.
- W3029405909 hasConcept C139287275 @default.
- W3029405909 hasConcept C145148216 @default.
- W3029405909 hasConcept C147597530 @default.
- W3029405909 hasConcept C147789679 @default.
- W3029405909 hasConcept C148093993 @default.
- W3029405909 hasConcept C185592680 @default.
- W3029405909 hasConcept C205049153 @default.
- W3029405909 hasConcept C30095370 @default.
- W3029405909 hasConcept C32909587 @default.
- W3029405909 hasConcept C62520636 @default.
- W3029405909 hasConcept C64147673 @default.
- W3029405909 hasConceptScore W3029405909C10803110 @default.
- W3029405909 hasConceptScore W3029405909C109757611 @default.
- W3029405909 hasConceptScore W3029405909C121332964 @default.
- W3029405909 hasConceptScore W3029405909C121864883 @default.
- W3029405909 hasConceptScore W3029405909C139287275 @default.
- W3029405909 hasConceptScore W3029405909C145148216 @default.