Matches in SemOpenAlex for { <https://semopenalex.org/work/W3029449714> ?p ?o ?g. }
- W3029449714 startingPage "343" @default.
- W3029449714 abstract "We study the complexity of black-box constructions of pseudorandom functions (PRF) from one-way functions (OWF) that are secure against non-uniform adversaries. We show that if OWF do not exist, then given as an oracle any (inefficient) hard-toinvert function, one can compute a PRF in polynomial time with only k(n) oracle queries, for any k(n) = ω(1) (e.g. k(n) = log∗ n). Combining this with the fact that OWF imply PRF, we show that unconditionally there exists a (pathological) construction of PRF from OWF making at most k(n) queries. This result shows a limitation of a certain class of techniques for proving efficiency lower bounds on the construction of PRF from OWF. Our result builds on the work of Reingold, Trevisan, and Vadhan (TCC ’04), who show that when OWF do not exist there is a pseudorandom generator (PRG) construction that makes only one oracle query to the hard-to-invert function. Our proof combines theirs with the Nisan-Wigderson generator (JCSS ’94), and with a recent technique by Berman and Haitner (TCC ’12). Working in the same context (i.e. when OWF do not exist), we also construct a poly-time PRG with arbitrary polynomial stretch that makes non-adaptive queries to an (inefficient) one-bit-stretch oracle PRG. This contrasts with the well-known adaptive stretch-increasing construction due to Goldreich and Micali. Both above constructions simply apply an affine function (parity or its complement) to the query answers. We complement this by showing that if the post-processing is restricted to only taking projections then non-adaptive constructions of PRF, or even linear-stretch PRG, can be ruled out. Both authors were supported by by NSF grant CCF-0845003. UCLA, enmiles@cs.ucla.edu. Research performed while a student at Northeastern University. Northeastern University, viola@ccs.neu.edu" @default.
- W3029449714 created "2020-06-05" @default.
- W3029449714 creator A5025615562 @default.
- W3029449714 creator A5072846764 @default.
- W3029449714 date "2016-01-01" @default.
- W3029449714 modified "2023-09-23" @default.
- W3029449714 title "On the complexity of constructing pseudorandom functions (especially when they don't exist)." @default.
- W3029449714 cites W139073700 @default.
- W3029449714 cites W1518083319 @default.
- W3029449714 cites W1585475679 @default.
- W3029449714 cites W1625658248 @default.
- W3029449714 cites W1807095039 @default.
- W3029449714 cites W1964089073 @default.
- W3029449714 cites W1967175855 @default.
- W3029449714 cites W1993138363 @default.
- W3029449714 cites W1998918799 @default.
- W3029449714 cites W2015880590 @default.
- W3029449714 cites W2019038806 @default.
- W3029449714 cites W2027528470 @default.
- W3029449714 cites W2052207834 @default.
- W3029449714 cites W2056002932 @default.
- W3029449714 cites W2061106457 @default.
- W3029449714 cites W2087660840 @default.
- W3029449714 cites W2110761203 @default.
- W3029449714 cites W2112962375 @default.
- W3029449714 cites W2117362057 @default.
- W3029449714 cites W2130192157 @default.
- W3029449714 cites W2162860799 @default.
- W3029449714 cites W2164284862 @default.
- W3029449714 cites W2171959510 @default.
- W3029449714 cites W2887278875 @default.
- W3029449714 cites W3117450064 @default.
- W3029449714 cites W2462364189 @default.
- W3029449714 cites W2499643107 @default.
- W3029449714 hasPublicationYear "2016" @default.
- W3029449714 type Work @default.
- W3029449714 sameAs 3029449714 @default.
- W3029449714 citedByCount "0" @default.
- W3029449714 crossrefType "posted-content" @default.
- W3029449714 hasAuthorship W3029449714A5025615562 @default.
- W3029449714 hasAuthorship W3029449714A5072846764 @default.
- W3029449714 hasConcept C104317684 @default.
- W3029449714 hasConcept C105355099 @default.
- W3029449714 hasConcept C111919701 @default.
- W3029449714 hasConcept C112313634 @default.
- W3029449714 hasConcept C11413529 @default.
- W3029449714 hasConcept C114614502 @default.
- W3029449714 hasConcept C115903868 @default.
- W3029449714 hasConcept C118615104 @default.
- W3029449714 hasConcept C121332964 @default.
- W3029449714 hasConcept C127716648 @default.
- W3029449714 hasConcept C134306372 @default.
- W3029449714 hasConcept C14036430 @default.
- W3029449714 hasConcept C140642157 @default.
- W3029449714 hasConcept C148730421 @default.
- W3029449714 hasConcept C154945302 @default.
- W3029449714 hasConcept C163258240 @default.
- W3029449714 hasConcept C178489894 @default.
- W3029449714 hasConcept C178774983 @default.
- W3029449714 hasConcept C185592680 @default.
- W3029449714 hasConcept C188082640 @default.
- W3029449714 hasConcept C203062551 @default.
- W3029449714 hasConcept C2777212361 @default.
- W3029449714 hasConcept C2780992000 @default.
- W3029449714 hasConcept C311688 @default.
- W3029449714 hasConcept C33923547 @default.
- W3029449714 hasConcept C41008148 @default.
- W3029449714 hasConcept C55166926 @default.
- W3029449714 hasConcept C55493867 @default.
- W3029449714 hasConcept C62520636 @default.
- W3029449714 hasConcept C78458016 @default.
- W3029449714 hasConcept C86803240 @default.
- W3029449714 hasConcept C90119067 @default.
- W3029449714 hasConcept C92913381 @default.
- W3029449714 hasConcept C94284585 @default.
- W3029449714 hasConceptScore W3029449714C104317684 @default.
- W3029449714 hasConceptScore W3029449714C105355099 @default.
- W3029449714 hasConceptScore W3029449714C111919701 @default.
- W3029449714 hasConceptScore W3029449714C112313634 @default.
- W3029449714 hasConceptScore W3029449714C11413529 @default.
- W3029449714 hasConceptScore W3029449714C114614502 @default.
- W3029449714 hasConceptScore W3029449714C115903868 @default.
- W3029449714 hasConceptScore W3029449714C118615104 @default.
- W3029449714 hasConceptScore W3029449714C121332964 @default.
- W3029449714 hasConceptScore W3029449714C127716648 @default.
- W3029449714 hasConceptScore W3029449714C134306372 @default.
- W3029449714 hasConceptScore W3029449714C14036430 @default.
- W3029449714 hasConceptScore W3029449714C140642157 @default.
- W3029449714 hasConceptScore W3029449714C148730421 @default.
- W3029449714 hasConceptScore W3029449714C154945302 @default.
- W3029449714 hasConceptScore W3029449714C163258240 @default.
- W3029449714 hasConceptScore W3029449714C178489894 @default.
- W3029449714 hasConceptScore W3029449714C178774983 @default.
- W3029449714 hasConceptScore W3029449714C185592680 @default.
- W3029449714 hasConceptScore W3029449714C188082640 @default.
- W3029449714 hasConceptScore W3029449714C203062551 @default.
- W3029449714 hasConceptScore W3029449714C2777212361 @default.
- W3029449714 hasConceptScore W3029449714C2780992000 @default.
- W3029449714 hasConceptScore W3029449714C311688 @default.